Table 6. Hydrogen-bond distances (\AA)
Symmetry code
(i) $-1+x, y, z$
(ii) $1-x, y-\frac{1}{2},-z$

$\mathrm{N}-\mathrm{Cl}(2)^{\mathrm{i}}$	$3.164(8)$	$\mathrm{O}_{\text {aq }}-\mathrm{Cl}(2)^{\mathrm{i}}$	$3.201(8)$
$\mathrm{N}-\mathrm{Cl}(2)^{i}$	$3.296(7)$	$\mathrm{O}_{\text {aq }}-\mathrm{Cl}(2)^{\mathrm{iv}}$	$3.220(6)$

The author wishes to thank Professor Peder Kierkegaard for his kind interest in this work and Dr Per-Erik Werner for many valuable discussions. This work has received financial support from the Swedish Natural Science Research Council. The author is also indebted to the foundation 'Stiftelsen Bengt Lundquists Minne' for financial support.
picrate salt (Thewalt \& Bugg, 1970) and as a creatinine salt (Karle, Dragonette \& Brenner, 1965). In the former, $5-\mathrm{HT}$ has a gauche conformation and in the latter the side chain is fully extended. The structural and conformational requirements for (R)-alaproclate to compete with $5-\mathrm{HT}$ in the uptake mechanism as well as stereochemical and electronic properties of a receptor model are discussed elsewhere (Lindberg, Thorberg, Bengtsson, Renyi, Ross \& Ögren, 1978; Lindberg, Ross, Thorberg, Ögren, Malmros \& Wägner, 1978).

The proposed mechanism for the $5-\mathrm{HT}$ uptake requires that the distances between the protonated N and the centre of the benzene ring in (R)-alaproclate and $5-\mathrm{HT}$, respectively, are approximately equal. The distances obtained from the crystal structure determinations are $6.64 \AA$ in (R)-alaproclate, $6.40 \AA$ in the creatinine salt and $5.11 \AA$ in the picrate salt of $5-\mathrm{HT}$. The distance obtained in (R)-alaproclate may well be compared to the corresponding distances of 6.55 and $6 \cdot 11 \AA$ in another antidepressant, the tricyclic compound chlorimipramine hydrochloride (Post \& Horn, 1977).

References

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Karle, I. L., Dragonette, K. S. \& Brenner, S. A. (1965). Acta Cryst. 19, 713-716.
Lindberg, U. H., Ross, S. B., Thorberg, S.-O., Ögren, S.O., Malmros. G. \& WÄGner. A. (1978). Tetrahedron Lett. 20, 1779-1782.
Lindberg, U. H., Thorberg, S.-O., Bengtsson, S., Renyi, A. L., Ross, S. B. \& Ögren, S.-O. (1978). J. Med. Chem. 21, 448-456.
Malmros, G. \& Werner, P. E. (1973). Acta Chem. Scand. 27, 493-502.
Post, M. L. \& Horn, A. S. (1977). Acta Cryst. B33, 2590 2595.

Scheraga, H. A. (1968). Adv. Phys. Org. Chem. 6, 103184.

Slater, J. C. \& Kırkwood, J. G. (1931). Phys. Rev. 37, 682-697.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Thewalt, U. \& Bugg, E. C. (1970). Acta Cryst. B28, 8289.

The Geometry of Small Rings.
 I. Substituent-Induced Bond-Length Asymmetry in Cyclopropane

By Frank H. Allen
Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1 EW, England

(Received 5 July 1979; accepted 13 August 1979)

Abstract

A subfile of numeric structural data for 299 X-ray studies of cyclopropane derivatives has been retrieved from the Cambridge Crystallographic Database. The geometries of 91 rings ($R \leq 0 \cdot 10$) having electronacceptor or electron-donor substituents have been analysed. Although individual bond-length asymmetries are quantitatively small there are consistent

trends to support the results of MO calculations. For π acceptor substituents the distal ring bond is shortened and vicinal bonds lengthened. Mean distal-bond shortenings, relative to the individual mean $\mathrm{C}-\mathrm{C}$ (ring) distance, are established for $\mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{C}$ and $\mathrm{C} \equiv \mathrm{N}$ as $-0.026(5),-0.022(4)$ and -0.017 (2) $\AA . \mathrm{N}=\mathrm{C}$, $\mathrm{N}=\mathrm{N}$ and $\mathrm{C}=\mathrm{N}$ are also implicated in effective acceptor interactions. cis- and trans-bisected conformations predominate, but for $\mathrm{C}=\mathrm{O}$, and possibly
$\mathrm{C}=\mathrm{C}$, orbital overlap appears to be effective for a range of $\pm 30^{\circ}$ about these ideal positions. Data for electrondonor substituents are sparse, but results for gemdifluoro and gem-dichloro substitution indicate significant distal-bond lengthening $\left[+0.060\right.$ (15) for F_{2}, +0.025 (7) \AA for $\mathrm{Cl}_{2} \mathrm{~J}$ in accord with theoretical predictions; the effect for Br is minimal. The effect of phenyl substituents is complex: they appear to accept electron density from the cyclopropane $3 e^{\prime}$ orbitals in the bisected conformation, but to donate electron density to the $4 e^{\prime}$ orbitals in the (predominant) perpendicular conformation; a mean distal-bond shortening of $-0.018(2) \AA$ is obtained. The proposed additivity of bond-length asymmetries is found to be applicable for pure acceptor substitution and for the Cl -donor effect; data for other donors, and for donor-acceptor mixtures, are too sparse for a valid test. The mean $\mathrm{C}-\mathrm{C}$ (ring) length for cyclopropane is 1.509 (2) \AA over 115 occurrences.

Introduction

Cyclopropane is a prime example of a simple chemical system exhibiting high strain energy. Its physical and chemical properties and reactivity patterns are atypical of cycloalkanes and have been recognized as being analogous to those of a $\mathrm{C}=\mathrm{C}$ double bond (Charton, 1970). The ability of cyclopropane to conjugate with adjacent π-acceptor groups, e.g. carbonyl, cyano etc. (Hoffmann, 1970; Hoffmann \& Stohrer, 1971), and its highly effective stabilization of carbonium ions (Deno, Richey, Liu, Lincoln \& Turner, 1965; Schleyer \& Buss, 1969), are of particular interest to chemists. For these reasons cyclopropane and its derivatives have been the subject of considerable theoretical, structural and synthetic study over the past thirty years.

Early studies on the nature of bonding in cyclopropane (Walsh, 1947, 1949; Sugden, 1947; Coulson \& Moffitt, 1947, 1949) predicted a $D_{3 h}$-symmetric molecule having a bond length somewhat shorter than a normal $\mathrm{C}\left(s p^{3}\right)-\mathrm{C}\left(s p^{3}\right)$ distance. This was confirmed by IR spectroscopy ($1.524 \pm 0.014 \AA$; Gunthard, Lord \& McCubbin, 1956) and, with greater precision, by electron diffraction ($1.509_{6} \pm 0.001_{5}$; Bastiansen, Fritsch \& Hedberg, 1964) and by Raman spectroscopy ($1.514 \pm 0.002 \AA$; Jones \& Stoicheff, 1964; Butcher \& Jones, 1973).

Gas-phase studies on cyclopropyl derivatives (see Penn \& Boggs, 1972, and references therein) and X-ray work on cyclopropanecarbohydrazide (Chesnut \& Marsh, 1958), 2,5-dimethyl-7,7-dicyanonorcaradiene (Fritchie, 1966) and, particularly, cyclopropane-1,1dicarboxylic acid (Meester, Schenk \& MacGillavry, 1971) indicated that π-acceptor substituents produced significant bond-length asymmetry in the ring. The distal $2-3$ bond opposite the substituent was shortened
and the vicinal $1-2,1-3$ bonds were lengthened. This asymmetry is explicable in terms of an MO model of cyclopropane bonding (Hoffmann, 1964, 1970; Hoffmann \& Davidson, 1971). In cases of π-donor substitution, e.g. cyclopropanone (Pochan, Baldwin \& Flygare, 1969), methylenecyclopropane (Laurie \& Stigliani, 1970) and particularly 1,1-difluorocyclopropane (Perretta \& Laurie, 1975), gas-phase results also indicated significant bond-length asymmetry, but in a direction opposite to that for π acceptors. This trend is not immediately explicable on Hoffmann's (1964) MO model. The picture is further complicated by Raman results obtained for cyclopropylamine (Hendrickson \& Harmony, 1969; Harmony, Bostrom \& Hendrickson, 1975), where the donor substituent produces asymmetry identical to that observed for π acceptors.
The present paper examines the experimental evidence for ring-bond asymmetry in cyclopropane produced by a variety of acceptor and donor substituents. The relevant data are assembled from the results of X-ray structural studies as stored in the Cambridge Crystallographic Database (CCD) (Kennard, Watson, Allen, Motherwell, Town \& Rodgers, 1975; Allen et al., 1979). These data are augmented by pertinent results obtained by other physical methods. The observed conformations and bond-length variations arc related to current theoretical models of bonding in cyclopropane and its derivatives, which are summarized briefly below.

Bonding in cyclopropanes

Three related models are available to describe the bonding in free cyclopropane: the trigonally hybridized

Fig. 1. Atomic-orbital representations of the two highest occupied and the unoccupied molecular orbitals of cyclopropane: (a) shows the $3 e^{\prime}$ orbitals, (b) the $4 e^{\prime}$ orbitals and (c) the all antibonding la a_{2}^{\prime} orbital.
model originated by Walsh (1947, 1949) and Sugden (1947), the bent-bond model of Coulson \& Moffitt (1947, 1949), and the MO approach of Hoffmann (1964) based on extended Hückel-theory calculations. These basic models have been extended and modified by other workers, and variously used to explain the observed properties of cyclopropane and its derivatives. The field has been reviewed by Bernett (1967), Charton (1970) and Lathan, Radom, Hariharan, Hehre \& Pople (1973).

The MO approach is the most appropriate for the present study and a full set of cyclopropane MO's is presented by Jorgensen \& Salem (1973). The C-C molecular orbitals relevant to the discussion below are the two highest occupied orbitals (the $3 e^{\prime}$ orbitals) and the unoccupied $4 e^{\prime}$ and $1 a_{2}^{\prime}$ orbitals. These are depicted in Fig. 1 as atomic-orbital approximations.

Interaction with π-acceptor substituents

The MO model provides a conceptually simple explanation of the conjugative ability of cyclopropane (Hoffmann, 1970; Hoffmann \& Davidson, 1971). The highest occupied orbital with the correct symmetry for interaction with π acceptors is $3 e^{\prime}$ (Fig. 1a). Maximum overlap of the cyclopropane $3 e^{\prime}$ orbital with low-lying unoccupied orbitals of the π system only occurs, however, when the two orbital systems are parallel (Fig. $2 a$), $i . e$. when the π-acceptor bond ($R_{1}-R_{11}$) bisects the ring in projection down $\mathrm{C}_{1}-R_{1}$ (Fig. $2 a$; see also Fig.

$4 a, b)$. Minimum overlap occurs when the $3 e^{\prime}$ orbital is perpendicular to the relevant π orbitals (Figs. $2 b$, 4f).

The effect of such orbital mixing is the transfer of electron density (e.d.) from cyclopropane to the π system. This will weaken the bonds for which the $3 e^{\prime}$ orbital has bonding character [i.e. the vicinal 1-2 and $1-3$ bonds of Fig. 2(a)], but will strengthen the distal $2-3$ bond, for which the $3 e^{\prime}$ orbital has antibonding character. Thus the pattern of bond-length asymmetry, with respect to the average ring-bond length, is as shown in Fig. 2(a) ($\delta+$ represents an increase in length, $\delta-$ a decrease; $\delta-\simeq 2 \delta+$). It is this electron-densitytransfer mechanism which accounts for the stability of cyclopropyl carbonium ions (Hoffmann, 1964, 1965).

Interaction with π-donor substituents

Three different orbital interactions have been invoked for the interaction between cyclopropane and a π donor, e.g. F, Cl etc. These are summarized by Jason \& Ibers (1977) as: (i) σ withdrawal of e.d. from cyclopropane; (ii) donation of e.d. from a donor orbital to the $1 a_{2}^{\prime}$ (all antibonding) orbital (Fig. 1c); (iii) donation of e.d. to the unfilled $4 e^{\prime}$ orbital (Fig. 1b) of appropriate symmetry. Interactions (i) and (ii) serve to lengthen all bonds, while (iii) produces the bond-length asymmetry pattern predicted for π acceptors (Fig. 2c).

Such predictions do not agree with microwave experiments. The ring bonds in cis,cis-1,2,3-trifluorocyclopropane (Gillies, 1976) and in hexafluorocyclopropane (Chiang \& Bernett, 1971) are uniformly 1.507 ± 0.001 and $1.505 \pm 0.003 \AA$ respectively, very close to the value for the free ring, while in cyclopropanone (Pochan, Baldwin \& Flygare, 1969) the vicinal bonds are shortened to $1.475 \pm 0.002 \AA$ and the distal bond lengthened to $1.575 \pm 0.002 \AA$; a similar pattern is shown by 1,1 -difluorocyclopropane (Perretta \& Laurie, 1975: vicinal $=1.464 \pm 0.002$, distal $=1.553 \pm 0.003$ \AA). Interaction (iii) has, however, been invoked by Harmony, Bostrom \& Hendrickson (1975) for cyclopropylamine (vicinal $=1.535 \pm 0.002$, distal $=1.513$ $\pm 0.002 \AA$) due to the fixed symmetry of the N lone pair with respect to the molecular symmetry plane. Interaction (iii) may also be important in assessing the interaction between cyclopropane and phenyl substituents (Jason \& Ibers, 1977) and is discussed below.

The conflict between theory and experiment for donor substituents has been resolved by LCAO-MOSCF wave-function calculations for cyclopropanone and methylenecyclopropane (Deakyne, Allen \& Laurie, 1977) and for a variety of fluorocyclopropanes (Deakyne, Allen \& Craig, 1977; Skancke, Flood \& Boggs, 1977). For these molecules a combination of interactions (i) and (ii) above predicts the pattern of bond-length asymmetry, with respect to the average ring-bond length, shown in Fig. 2(c) (here $\delta+\simeq 2 \delta-$).

The additivity principle

It has been suggested, for both π-acceptor (Hoffmann \& Stohrer, 1971) and π-donor substituents (Deakyne, Allen \& Craig, 1977), that bond-length asymmetry in multiply substituted cyclopropanes should approximate a summation of the asymmetries induced by each individual substituent. Application of this principle to 1,1- and 1,2-diketocyclopropanes is illustrated in Fig. 2(d),(e). Fig. 2(d) simply shows a doubling of the monosubstituent asymmetry (Fig. 1b). Combination of two monosubstituent asymmetries for the 1,2 -compound predicts that the $1-3$ and $2-3$ bonds should be approximately equal and significantly shorter than the $1-2$ bond between the substituted ring atoms.

Methodology

Data retrieval

In order to examine the theoretical predictions noted above, the X-ray crystallographic data for compounds containing the cyclopropane system were retrieved. A subfile of 299 DATA file entries, together with a listing of bibliographic citations, was created from the April 1979 release of CCD with the programs CONNSER and RETRIEVE (Allen et al., 1979). Some statistics for the retrieved subfile are listed in Table 1. Entries with $R>0.10$ were omitted from the analysis unless they contained structural features of special interest. A few entries with $R \leq 0.10$ were also rejected due to disorder, errors in coordinate lists or unusually high $\sigma(\mathrm{C}-\mathrm{C})$ values. This left an effective database for the analysis of 146 coordinate sets. Complete intramolecular geometry listings and a stick plot of each structure were obtained with GEOM 78 and PLUTO 78 (Allen et al., 1979). The tables presented in the analysis were derived from special listings prepared with GEOM 78.

Each X-ray structure referred to in this work is identified by the CCD reference code (Kennard, Watson \& Town, 1972; Allen et al., 1979). This consists of six alphabetic characters identifying the chemical compound and a possible two digits which trace the publication history, e.g. DCPEDO,

Table 1. Statistics for cyclopropane subfile

Number of entries retrieved	299
Number of organic entries	266
Number of entries without coordinates	81
Number of entries with coordinate errors	7
Entries with coordinates (error-free)	178
Enties with coordinates and $R \leq 0 \cdot 10$	146^{*}
Entries with coordinates and $R \leq 0.05$	52

[^0]CPRPCX10. A full list of references, ordered alphabetically by reference code, and giving the compound name as well as the literature citation, appears as Table 2. Reference codes are also used in the text as a conveniently brief mnemonic for individual structures. Results obtained by other physical methods are cited in the standard manner in the text and as table footnotes.

Generation and presentation of results

Cyclopropane $-\pi$-acceptor interactions are described in the framework of Fig. 3; for donor substituents (e.g. $\mathrm{F}, \mathrm{Cl},=\mathrm{O}$ etc.) atom R_{11} is absent, hence D_{5} and τ (see below) are also absent. The full set of parameters used in the tabulation of results is:

Code: CCD reference code.
S : number of potential acceptor or donor substituents at each node, e.g. in Fig. $3, S=100$ but if R_{2} $=R_{3}=R_{5}=\mathrm{COOH}$ then $S=211$.
s : number of all non-H substituents at each node, e.g. $s=120$ (Fig. 3) if $R_{3}=R_{4}=\mathrm{CH}_{3}$.
R_{n} : chemical nature of substituent atoms, denoted by element symbol(s) and (where appropriate) an environment indicator: $r=$ ring atom, $c=$ chain atom, $t=$ terminal atom; hence $\mathrm{C} t$ is a methyl group.
R : crystallographic R factor (\%) or physical method if not X-ray.
σ : mean $\sigma(\mathrm{C}-\mathrm{C}) \times 10^{3} \AA$ for ring bonds.
D_{n} : bond lengths $D_{1}-D_{5}(\AA)$ of Fig. 3.
$\Delta:$ mean $\mathrm{C}-\mathrm{C}$ (ring) length (\AA).
$\delta_{n}: D_{n}-\Delta$ for the $\mathrm{C}-\mathrm{C}$ (ring) bonds. A positive value indicates the lengthening (weakening) of a bond.
τ : torsion angle $X_{1}-\mathrm{C}_{1}-R_{1}-R_{11}$ (Fig. 3, and see below).
conf.: conformational descriptor (see below).
S^{\prime} : the number of effective acceptor or donor substituents at each node; the δ_{n} values are used, where possible, to identify the substituent interactions which contribute significantly to bond-length asymmetry.

The tables are ordered, where necessary, on increasing S, s values. In cases of multiple substitution there are several D_{4}, D_{5}, τ and conf. values; these appear as additional lines for each code. For π acceptor(s) at

Fig. 3. Parameters and mnemonics used in the geometric analysis.

Table 2. Bibliography
Literature references to X-ray studies cited in the analysis are given below, ordered alphabetically by CCD reference code (see text). The compound name, author list, journal name, volume, page and year are tabulated for each entry

ACCCYP	cis-1,2-Diacetonyl-1,2,3,3-tetrachlorocyclopropane F.P.Boer, J.J.Flynn, J.K. Hecht, J.Chem.Soc.B, 381,1970
ACMYCR	```Acetylacetonato-bis(eta(2)-methylenecyclopropane) rnodium(i) M.Green,J.A.K.Howard,R.P.Hughes,S.C.Kellett,P.Woodward J.Chem.Soc.,Dalton, 2007, 1975```
ACXBDO	(5E, 12E) -7beta-Acetoxybertya-5,12-diene-3,14-dione E.N.Maslen,R,F.Toia,A.H.White, A.C.Willis J.Chem.Soc., Perkin 2, 1684, 1975
AImCty	5'-Acetyl-7,7-dichloro-2', 3'-isopropylidene-3-methylcyclothymidine J. Bode, H.Schenk, Cryst.Struct.Commun., 6, 645, 1977
ARITOL	(-)-Aristolone F.H.Allen, O. Kennard, J.Trotter Acta Crystallogr..Sect.B, 29, 1451, 1973
AXHBDO	```(5E,12E)-7beta-Acetoxy-15beta-hydroxybertya-5,12-diene- 3,14-dione E.N.Maslen,R.F.Toia,A.H.White,A.C.Willis J.Chem.Soc.,Perkin 2, 1684, 1975```
BARTUS 10	Barbatusin p-bromobenzoyl ester benzene solvate R.Zelnik, D. Lavie, E.C. Levy, A.H.-J.Wang, I.C. Paul Tetrahedron, 33, 1457, 1977
BERTPP	Bertyadionol photoproduct S.R. Hall, C.L. Raston, A.H.White Tetrahedron, 34, 753, 1978
BNPCPR	1,1-Dibromo-trans-2,3-bis(p-nitropheny1) cyclopropane M.E.Jason,J.A.Ibers, J.Am.Chem.Soc., 99, 6012, 1977
BPVBCP	trans-1-(2'-p-Bromophenyl-vinyl)-2-benzoylcyclopropane M.O. Dekaprilevicn,L.G.Vorontsova 2h.Strukt.Khim., 16, 426, 1975
BRTPCP	1,1-Dibromo-trans-2,3-diphenylcyclopropane M.E.Jason,J.A.Ibers, J.Am.Chem.Soc., 99, 6012, 1977
BRVCPC	3-phenoxybenzyl cis-3-(2', 2'-dibromovinyl)-2,2dimethylcyclopropane carboxylate J.D.Owen, J.Chem.Soc., Perkin 1, 1231. 1976
Cexvc	trans-1, 2-bis(beta-Carboethoxyvinyl)cyclopropane M.O.Dekaprilevich, L.G. Vorontsova 2h.Strukt.Khim., 16, 826, 1975
CLPXCN	1,1,la,7a-Tetrachloro-1a,2,7,7a-tetrahydro-2,7-diphenyl- 2,7-epoxy-1H-cyclopropa (b) naphthalene J. Bordner, G.R.Howard, Cryst.Struct.Commun., 4, 1.31, 1975
CLVCPC	3-Phenoxybenzyl cis-3-(2',2'-dichlorovinyl)-2,2dimethylcyclopropane carboxylate J.D.Owen, J.Chem.Soc., Perkin 1, 1231, 1976
CLXBHP10	exo-7-Chloro-7-phenyl-2,5-dioxabicyclo(4.1.0) heptane J.D.Oliver, G. Henslee, P.E.Rush Acta Crystallogr.,Sect. $B, 32,2274,1976$
CMCPYE	1-(2,2-Dichloro-3,3-dimethylcyclopropyl)ethanol C. Romming, L.K.Sydnes Acta Chem.Scand.Ser.B, 31, 130, 1977
CMODOD	6,6,12,12-Tetrachloro-3,3,9,9-tetramethoxytricyclo(9,1,0,0(5,7))dodecane R.W.Baker, P.J.Pauling, J.Chem.Soc., Perkin 2, 1451, 1972
CMYC2A	Chloromycorrhizin A C.Stalhandske, C.Svensson, C.Sarnstrand Acta Crystallogr.,Sect.B, 33, 870, 1977
CPBTS X	```2-Phenylcyclopropane-1-spiro-4'-(2'-benzylthio-4',5'- dihydro-6'H-1',3'-thiazine)-5'-spiro-2''-oxirane M.L.Martinez,F.H.Cano,S.Garcia-Blanco Acta Crystallogr.,Sect.B, 33, 3913, 1977```
CPCCYP	1,1-b1s-(p-Chlorophenyl)-2,2-dichlorocyclopropane T.P.De Lacy,C.h.L.Kennard J.Chem.Soc., Perkin 2, 2141, 1972

CPMOIC10 la-(p-Chlorophenoxy)la,7b-dihydrobenzo(d)-cyclopropa(b)-pyran-3(1h)one
L.J.Guggenberger, R.A.Jacobson Acta Crystallogr.,Sect.B, 25, 888, 1969
C POBOC 10 syn-8,8-Dichloro-4-phenyl-3.5-dioxabicyclo(5.1.0) octane G.R.Clark,G.J.Palenik, J.Chem.Soc., Perkin 2, 194, 1973

CPRDCA Cyclopropane-1,1-dicarboxylic acid
Cyclopropane-1,
M.A.M.Meester, H.Schenk, C.H.MacGillavry
Acta Crystallogr.,Sect. $\mathrm{B}, 27,630,1971$

CPRPCXIO Cyclopropanecarboxamide R.E. Long, H. Maddox, K.N.Trueblood Acta Crystallogr.,Sect. B, 25, 2083, 1969

CPSCPALO (1RS, 2SR)-2-((SR)-(p-Chlorophenyl)sulfinyl)-N,N,3,3-
ecramethyl-cyclopropylamine
Acta Crystallogr.,Sect. B, 33, 221, 1977
CPXZSH10 cis-1,5-Diphenyl-6-oxa-4-aza-spiro(2.4)hept-4-en-7-one M.L.Martinez,F.H.Cano, S.Garcia-Blanco Acta Crystallogr.,Sect.B, 34. 593. 1978
8.8-Dichloro-tricyclo(3.2.1.0(1,5)) octane
K.B.Wiberg,G.J.Burgmaier,K.-W. Shen, S.J. La Placa
W.C.Hamilton,M.D.Newton, J.Am.Chem.Soc., 94, 7402, 1972

CYBUTBIO Cyclobutatusin p-bromobenzoyl ester
R.2elnik, D. Lavie, E.C. Levy, A.H. H. Wang, I.C. Paul
Tetrahedron, 33 , 1457 , 1977 Tetrahedron, 33, 1457, 1977

CYCYPR Cis-1,2,3-Tricyanocyclopropane
A. Hartman, F.L.Hirshfeld, Acta Crystallogr., 20, 80, 1966

CYPRCA trans-1,2-Cyclopropane dicarboxylic acid
A. L. Bednowitz, Acta Crystallogr.,Sect.A, 25, S129, 1969

CYPROTIO Cyproterone acetate
R.J.Chandross, J. Bordner

Acta Crystallogr.,Sect.B, 30, 1581, 1974
CYTCODIO 1-Cyano-tricyclo(3,3.0.0(2,8))octa-3,6-diene G.G.Christoph,M.A.Beno, J.Am.Chem.Soc., 100, 3156, 1978

DBDPCP 1,1-Dibromo-2,2-diphenyl-cyclopropane J.W. Lauher,J.A.Ibers, J.Am.Chem.Soc.. 97, 561, 1975

DCDPCP 1,1-Dichloro-2,2-diphenyl-cyclopropane J.W.Lauher, J.A.Ibers, J.Am.Chem.Soc., 97, 561, 1975

DCPEDO Dicyclopropyl-ethanedione
Dicyclopropyl-ethan
C.N.A. Lute,C.H.Stam
Rec.Trav.Chim. Pays-Bas, 95, 130, 1976
DCYBUT 1,3-Dicyanobicyclo(1.1.0) butane
P.L.Johnson,J.P.Schaefer, J.Org.Chem., 37, 2762, 1972
trans-2,trans-3-Dimethylcyclopropane-carboxylic acid P.A.Luhan, A.T.McPhail, J.Chem.Soc., Perkin 2, 2372, 1972

DTERDP Diterpene D photoproduct
S.R.Hall, C.L.Raston, A.H. White

Tetrahedron, 34, 753, 1978
EBBSHD 1-(p-Ethylbenzoyl)-benzo(6,7)spiro(2.3)nept-6-ene-4,7dione
V.G.Andrianov, H. A. Karapetyan, Yu.T.Struchkov Cryst.Struct.Commun., 7, 553, 1978

EBMZDC 4-Ethoxycarbonyl-5-(p-bromobenzoyloxy)-8,8-dimethyl-3,4,9,10-tetra-azatricyclo(5.3.0.0(1,6))deca-2,9-diene R.Allmann, T. Debaerdemaeker
Cryst.Struct.Commun. 3, 205, 1974

EOCNON10 9,9-Dichloro-trans,trans-bicyclo(6.1.0)non-4-ene oxide W.A.Szabo, M.F.Betkouski,J.A.Deyrup, M. Mathew, G.J. Palenik J.Chem.Soc., Perkin 2, 339, 1973

EPXHPC Methyl 2alpha,3alpha,4alpha,5alpha-diepoxy-cis(lal phaH, 2alphaH) -bicyclo(4.1.0) heptane-7al phacarboxylate
D.J. Brauer, C.Kruger, P.J. Roberts
J.Chem.Soc., Perkin 2, 532, 1976

EXPOCP Dimethyl 8-exo-phenylbicyclo(5.1.0)octa-2,4-diene-8phosphonate
R.Hoge,G.Mas, Acta Crystallogr.,Sect.B, 32, 3339, 1976

EXPPCA l-exo-Phenyl-bicyclo(2.1.0)pentane-5-carboxylic acid G. Bernardinelli, J. -J. Combremont, R. Gerdil Helv.Chim.Acta, 59, 1395, 1976

FMHIPR 6alpha,7al pha-Difluor omethylene-llbeta-hydroxy16alpha, 17al pha-isopropyl idenedioxy-2l-p-bromobenzoyloxy-pregn-4-en-20-one (3,2-c)-2' phenylpyrazole butanol solvate E.Thom,A.T.Christensen Acta Crystallogr.,sect.B, 27, 573, 1971
FMPRPY 6alpha,7alpha-Difluoromethylene-16alpha-methyl11beta, 17 alpha, 21-trihydroxypregn-4-en-20-one(3,2-c)-2' phenylpyrazole 21 -p-bromobenzoate A.T.Christensen

Acta Crystallogr.,Sect.B, 26, 1519, 1970
hCERGO
(23R)-23-Hydroxy-3alpha,5alpha-cycloergost-7-en-6-one M.B. Hursthouse, S. Neidle, J.Chem.Soc., Perkin 2, 781, 1973

IPBHCZ N'-Isopropylidene-bicyclo(3.1.0) hexane-6-exocarbohydrazide
D.G.Morris, P.Murray-Rust, J. Murray-Rust
J.Chem.Soc., Perkin 2, 1577, 1977

Table 2 (cont.)

```
MANDAC
    beta,7be
    7-acetate
    B.Braun,J.Hornstra,J, I. Leenhouts
    Acta Crystallogr.,Sect.8, 26, 352, 1970
MADCTD 12-Methyl-11,13-diox0-12-
    azapentacyclo(4.4.3.0(1,6).0(2,10).0(5,7)) trideca-3,8-
    diene
    K.J. Hwang,J.Donohue,C.Tsa
    Acta Crystallogr..Sect.B, 28, 1727, 1972
MBCPCX 1,1'-Dimethyl-bi(cyclopropyl)-2,2'-dicarboxylate
    C.Jongsma,H.van der Mee
    Rec.Trav.Chim.Pays-Bas, 90, 33, 1971
MBPNCP Dimethyl 2,5-dibromo-7-phenyl-norcaradiene-7-phosphonate
    G.Maas,K.Fischer,M,Regitz 30,2853, 1974
    Acta Crystallogr..Sect.B, 30, 2853, 197
2,5-Dimethyl-7,7-dicyanonorcaradiene
    .J.Fritchie, Acta Crystallogr., 20, 27, 1966
MCMDOD 3,3-Dimethyl-4,5,9,10,11,12-hexacarboxymethyl-
    tetracyclo(7.2.1.0(2,4).0(2,8))dodeca-5,7,10-triene
    J.P.Declercq,G.Germain,H.Henke
    Cryst.Struct.Commun., 2, 405, 1973
MCPNCP Dimethyl 2,5-dichloro-7-phenyl-norcaradiene-7-
    posphonate
    G.Maas,K.Fischer,M.Regitz
    Acta Crystallogr.,Sect.B, 30, 2853, 1974
MCPRAC 3-Methylene cyclopropane-trans-1,2-dicarboxylic acid
    D.R.Petersen, Chem. Ind.(London), 904, 1956
Methyl 2,5-dihydroxybicyclo(4.1.0)heptane-7-carboxylate
    M.Brauer,C.Kruger,P.J.Robert
Mikrolin
    H.P.Weber,T.J.Petcher, Helv.Chim.Acta, 59, 1821, }197
MOAOSP10 3,7-Dimethy1-1,5-dioxa-3,7-diazacyclo-octane-2,4,6,8-
```



```
    H.Schenk, Acta Crystallogr.,Sect.B, 27, 185, 1971
MOPOPB 6-Methyl-2-oxo-1,2-diphenyl-3-oxa-2-
    phosphabicyclo(3.1.0) hexane
    J.Jager, Z.Kristallogr., 147, 89, 1978
MOXSOC Dimethyl 6',7'-dimethyl-3'-oxospiro(oxirane-2,4'-
    ricyclo(3.3.0.0(2,8) oct-6-ene)-1 ,8'-dicarboxylate
    O.Lindgren, Acta Crystallogr.,Sect.B, 34, 2638, 1978
MPBTCDIO 7,8-(5-Methoxybenzo)tricyclo(4.3.1.0(2,9))deca-4,7-
    diene-9-phosphonic acid dimethyl ester
    G.Maas,M.Regitz, Chem.Ber., 111, 1733, 1978
MPDECO (+)-6,7-Dimethyl-4-isopropyl-tricyclo(4.4.0.0(2,4))dec-
        -ene-9-one
        A.R.Overbeek,G.J.Ol thof,N.van der Putten,H.Schenk
        Cryst.Struct.Commun., 7, 679, 1978
MTCBPR meso-2,2,2',2'-Tetrachloro-3,3,3',3'-
    etramethylbicyclopropyl
    C. Romming,L.K.Sydnes
    Acta Chem.Scand.Ser.B, 30, 963, 1976
    end
    W.J.Seifert,T.Debaerdena
    Acta Crystallogr.,Sect.B, 31, 537, 1975
MXPCAR 7-Dimethoxyphosphoryl-7-phenyl-norcaradiene
    G.Maas,K.Fischer,M.Regitz 
NCUBEB10 Norcubebanone
    W.E.Thiessen, Acta Crystallogr.,Sect.B, }3, 3838, 1977
NPCPMK E-2-p-Nitrophenyl-cyclopropyl methyl ketone
    E-2-p-Nitrophenyl-cyclopropyl me
    Cryst.Struct.Commun.. 1, 389, 197
Hexacyclo (9.3.2.2(4,7).0(2,9).0(3,8).0(10,12))
    octadeca-13,15,17-triene-5,6-carbonate
    J.J.Stezowskı, Cryst.Struct.Commun., 4, 329, 1975
```

more than one node, e.g. ring $C(2)$, the τ value is $X_{2}-\mathrm{C}_{2}-R_{n}-R_{n 1}$, where $n=3$ and/or 4 .

Conformational descriptors (conf.)

For cyclopropane- π-acceptor interactions the torsion angle $\tau\left(X_{1}-\mathrm{C}_{1}-R_{1}-R_{11}\right)$, where X_{1} is the midpoint of the distal $2-3$ bond, is used to describe con-

```
PBBSHD
-(p
V.G.Andrianov,H,A.Karapetyan, Yu.T.Struchkov
Cryst.Struct.Commun.. 7, 559, 1978
PBOPOS Dimethyl 8-phenyl-bicyclo(5.1.0)octa-2,4-diene-8-
    phosphonate 
PBTCOU 6-Phenyl-4-oxa-8,9:10,11-
    *)
    dibenzotricyclo(5.4.0.0,1,6) andeca-2,8,10-tri
    J.R.Neth.Chem.Soc.. 97. 197. 1978
PMCPRC10 R-(t)-2,2-Diphenyl-1-methyl-cyclopropanecarboxylic acid
    C.C.Chiang,C,-T.Lin,A.H.-J.Wang,D.Y.Curtin,I.C.Paul
    J.Am.Chem.Soc., 99, 6303, 1977
PORBETIO Phorbol
    F.Brandl,M.Rohrl,K.Zechmeister,W.Hoppe
    Acta Crystallogr.,Sect.B, 27, 1118,1971
PXBVCP10 alpha-Cyano-3-phenoxybenzyl cis-3-(2,2-dibromovinyl)-
    2,2-dimethyl-cyclopropanecarboxylate
    J.D.Owen, J.Chem.Soc.,Perkin 1, 1865, 1975
SDPPCX S-(+)-2,2-Diphenyl-cyclopropanecarboxylic acid
    C.C.Chiang,C.-T.Lin,A.H,-J.Wang,D.Y.Curtin,I.C.Pau
    J.Am.Chem.SoC.. 99, 6303, 1977
SINDNC Spiro(indene-1,7'-norcaradiene)
    Spiro(indene-i,j-norcaradiene)
    N.Dreissig,P.Luger,D.Rewicki,C.TuC
SPT2BN Spiro-(N(1)-phenyl-1,2,3-triazole-5-one-4,9'-
    bicyclo(6.1.0) nonane)
    J.P.Declercq,G.Germain,M.P.Rousseaux,M.van Meerssche
    Cryst.Struct.Commun., 3, 499, 1974
SRMTPX (SR)(RS)-Dimethyl 2-(p-tolylsulfanyl)-1,1-cyclopropane-
    dicarboxylate
    F.Iwasaki,S.Mitamura,G.Tsuchihashi
    Bull.Chem.Soc.Jpn.. 51, 2530, 1978
SSMTPX (SS)(RR)-Dimethyl 2-(p-tolylsulfanyl)-1,1-cyclopropane-
    icarboxylate
    F.Iwasaki,S.Mitamura,G.Tsuchihashi
    Bull.Chem'S.Mitamura,G.Tsuchihashi
TCHRBA (+)-trans-Chrysanthemic acid p-bromoanilide
    A.F.Cameron,G.Ferguson,C.Hannaway
    J.Chem.Soc.,Perkin 2, 1567, 1975
TCYCPR 1,1,2,2-Tetracyanocyclopropane
    Y.Wang,G.D.Stucky
    Acta Crystallogr..Sect.B, 29, 1255, 1973
TCYCPRO1 1,1,2,2-Tetracyanocyclopr opane
    J.T.Lemley,P.M.Skarstad,R.E.Hughes
    Acta Crystallogr.,Sect.B, 32, 35, 1976
TFPRBA trans-21,2l-Tetrafluoroethylene-5alpha-pregn-17(20)-en-
    omobenzoate 20-acetate
    A.T.Christensen, Atlas Steroids Struct., 1, 410, 1975
TOLIPOIO Tolypomycinone monohydrate
    M.Brufani,L.Cellai,S.Cerrini,W.Fedeli,A.Vaciaqo
    Mol.Pharmacol., 14, 693. 1978
TOXCNS Toxisterol C)l( 3,5-dinitrobenzoate
    A.J.de Kok,F.Boomsma,C, Romers
    Acta Crystallogr.,Sect.B, 32, 2492, 1976
TPCLPR 2,2',3,3'-Tetraphenyl-3,3'-dichloro-bicyclopropane
    C.G.Kouw,D.Hottentot,C.H.Sta
    Cryst.Struct.Commun., 4, 623, 1975
TPCYPR10 Tri-isopropylidene cyclopropane
    H.Dietrich, Acta Crystallogr..Sect.8, 26, 44, 1970
TPXZSH10 trans-1,5-Diphenyl-6-oxa-4-aza-spiro(2,4) hept-4-en-7-one
    trans-1,5-Diphenyl-6-oxa-4-aza-spirol
    Acta Crystallcgr.,Sect,B, 34, 593, 1978
    9-Hydroxy-1-methoxy-2-methyl-
    tricyclo(5.2.1.0(2,10))decane p-1odobenzoate
    D.Caine,H.Deutsch,S.T.Chao,D.G.VanDerveer,J.A.Bertrand
    J.Org.Chem., 43, 1114, 1978
```

formation. τ is a measure of the deviation of the π system from the bisected position of Fig. 2(a), and commonly occurring conformations are systematized as Newman projections in Fig. 4. The bisected conformation occurs at $\tau=0^{\circ}$ [cis-bisected: $c b$, Fig. 4(a)] and at $\tau=180^{\circ}$ [trans-bisected: tb, Fig. 4(b)]. The perpendicular conformation (Fig. 2b) has $\tau= \pm 90^{\circ}$ and is designated p (Fig. 4c).

Fig. 4. Newman projections down the $\mathrm{C}_{1}-R_{1}$ vector illustrating the conformation descriptors used in the analysis.

The geometrical analysis also indicates conformational projections in which the $R_{1}-R_{11}$ vector is approximately parallel to one of the vicinal ring bonds. Such conformations are designated as gauche. The four possible arrangements (Fig. 3d-g) correspond to $\tau=$ $+30^{\circ}$ [cis-gauche (2): cg2], $\tau=-30^{\circ}$ [cis-gauche (3): cg3], $\tau=-150^{\circ}$ [trans-gauche (3): tg3], and $\tau=$ $+150^{\circ}$ [trans-gauche (2): $\operatorname{tg} 2$]. The differentiation between ring atoms 2 and 3 has meaning since these nodes often exhibit differing substitution patterns. Wherever possible $\mathrm{C}(2)$ is designated as the more highly substituted secondary site.

For phenyl substituents, where atoms R_{11} and R_{12} are part of the planar aromatic system, cis and trans have no meaning and only four conformations apply: bisected, perpendicular, gauche (2) and gauche (3). The angle τ is derived from the mean of $\tau\left(R_{12}\right)$ and $\tau\left(R_{12}\right)$, normalized to the range $-90 \leq \tau \leq 90^{\circ}$.

Error estimates

Mean values of D_{4}, D_{5}, Δ, and δ_{n} are frequently quoted in this analysis. Parenthetical standard deviations are calculated for D_{4}, D_{5} and Δ from $\sigma=[(\bar{x}$ $\left.\left.-x_{i}\right)^{2} / m(m-1)\right]^{1 / 2}$ for m observations. For the derived δ_{n} values $\sigma=\left[\left(\bar{x}-x_{i}\right)^{2} /(m-1)\right]^{1 / 2}$ is used. Standard deviations for the torsion angle τ are not given explicitly, since τ is used solely to distinguish conformations which differ by a minimum of 30°; for the structures under discussion it is unlikely that $\sigma(\tau)$ exceeds 3°. Individual parameters determined by other physical methods (ED: electron diffraction; M: microwave; IR: infrared; N: NMR; R: Raman) are followed by error estimates in parentheses, even though these are not directly comparable to crystallographic e.s.d.'s. The
physical method abbreviation replaces R for non-X-ray studies.

Geometry of free cyclopropane

The most accurate studies of free cyclopropane give a $D_{3 h}$-symmetric C-C distance of 1.5096 (15) \AA (ED; Bastiansen, Fritsch \& Hedberg, 1964) and 1.514 (2) \AA (R; Jones \& Stoicheff, 1964; Butcher \& Jones, 1973). Other gas-phase results on symmetrically substituted rings where, according to the additivity rule, bondlength asymmetry effects should cancel each other, are: 1.513 (9) \AA (hexachloro, M; Barzdain, Fracheva \& Alekseev, 1972), $1 \cdot 505$ (3) \AA (cis,cis-1,2,3-trifluoro, M; Gillies, 1976) and 1.507 (1) \AA (hexafluoro, ED; Chiang \& Bernett, 1971).

The effective X-ray database (Table 1) contains 27 studies of derivatives having only $\mathrm{C}\left(s p^{3}\right)$ or H as substituents. The mean $\mathrm{C}-\mathrm{C}$ (ring) distance at 1.508 (3) \AA is in accord with the values cited above. The range of the 81 individual distances is, however, rather wide ($1.469-1.535 \AA$), as is the range of the 27 separate means ($1.490-1.530 \AA$). In the analysis of substituent-induced bond-length asymmetry it is therefore appropriate in deriving δ_{n} values to use the mean $\mathrm{C}-\mathrm{C}$ length ((4) for each individual ring, rather than the global average of the results cited here.

Interaction of cyclopropane with π-acceptor substituents

Carbonyl group

The carbonyl group is the mosi commonly occurring π-acceptor substituent in the cyclopropane X-ray literature. There are 20 entries (yielding 22 rings and 30 interactions) in which carbonyl is the sole π-acceptor, with only $\mathrm{C}\left(s p^{3}\right)$ or H as additional substituents. The relevant data for pure carbonyls are in Table 3, while a further 19 carbonyls appear in the mixed-substituent analyses of Tables 6 and 7.
The results of Table 3 show some consistent and significant trends:
(1) The 16 examples with $S=100$ all show a relative shortening of the distal bond D_{1}; values of δ_{1} range from -0.010 to $-0.044 \AA$ with 13 values in the narrow range from -0.018 to $0.033 \AA$. The mean overall δ_{1} is -0.025 (7) \AA.
(2) The predominant $S=100$ conformation is $c b$, but $c g$ and $t g$ conformers are common. Only one entry, CYBUTB 10 , approaches the p conformation and it has somewhat anomalous δ_{n} values. The shortening of the distal bond appears to be retained for a range of $\pm 30^{\circ}$ about the bisected position. The mean δ_{1} for the nine $c b$ conformations is -0.026 (5) \AA, while the mean for the

Table 3. Analysis of cyclopropane-carbonyl conjugation

Code	S^{a}	s	R_{1}, R_{2}	R_{3}, R_{4}	R_{3}, R_{6}	R	σ	D_{1}	D_{2}	D_{3}	Δ	$\delta_{1} \quad \delta_{2} \quad \delta_{3}$	D_{4}	D_{5}	$7\left({ }^{\circ}\right)$	Conf.
CPRPCX10	100	100	$\mathrm{C}=\mathrm{O} . \mathrm{H}$	H.H	H, H	8.7	7	1.466	1.484	1.501	1.484	-18 $0+17$	1.484	1.238	-7.7	cb
								1.449	1.493	1.488	1.477	$-28+11+17$	1.469	1.248	-4.7	cb
DCPEDO ${ }^{\text {b }}$	100	100	$\mathrm{C}=\mathrm{O}, \mathrm{H}$	H, H	H, H	4.7	5	1.475	1.509	1.515	1.500	$-23+9+15$	1.455	1.213	-3.2	cb
CYPROT $10^{\text {b }}$	100	110	$\mathrm{C}=\mathrm{O}, \mathrm{H}$	H, Cr	H. H	5.4	10	1.450	1.486	1.472	1.469	$-19+17+3$	1.471	1.236	-158.6	$\operatorname{tg} 2$
TOLIPO10	100	110	$\mathrm{C}=\mathrm{O}, \mathrm{H}$	Cr, H	H, H	5.9	6	1.485	1.502	1.542	1.510	$-25-8+32$	1.482	1.223	-24.0	cg3
bartusio	100	210	$\mathrm{C}=\mathrm{O}, \mathrm{Cr}$	H, ${ }^{\text {c }}$	H, H	6.5	14	1.477	1.515	1.536	1.509	$-32+4+27$	1.505	1.196	-10.5	cb
CMYCZA ${ }^{\text {b }}$	100	210	$\mathrm{C}=\mathrm{O}, \mathrm{C} r$	H, Cr	H, H	3.0	5	1.484	1.521	1.529	1.511	$-27+10+18$	1.471	1.205	-2.2	cb
CYBUTB10	100	210	$\mathrm{C}=0, \mathrm{Cr}$	H, Ct	H, H	6.2	18	1.521	1.521	1.550	1.531	$-10-10+19$	1.505	1.204	-58.5	cg3/p
HCERGO ${ }^{\circ}$	100	210	$\mathrm{C}=\mathrm{O}, \mathrm{Cr}$	H, Cr	H, H	8.4	13	1.482	1.552	1.545	1.526	$-44+26+19$	1.462	1.220	18.8	cb/cg 3
MIKROL ${ }^{\text {b }}$	100	210	$\mathrm{C}=\mathrm{O}, \mathrm{Cr}$	H, Cr	H.H	5.5	10	1.474	1.496	1.526	1.499	$-25-3+27$	1.443	1.226	-31.3	cg 3
DMCPRC	100	111	$\mathrm{C}=\mathrm{O}, \mathrm{H}$	H,Ct	H, Ct	8.5	7	1.477	1.509	1.521	1.502	$-25+7+19$	1.456	1.246	-7.3	cb
EPXHPC	100	111	$\mathrm{C}=\mathrm{O}, \mathrm{H}$	Cr, H	Cr, H	5.5	5	1.464	1.507	1.519	1.497	$-33+10+22$	1.480	1.213	-2.6	$c b$
IPBHCZ	100	111	$\mathrm{C}=\mathrm{O}, \mathrm{H}$	Cr, H	Cr, H	$5 \cdot 6$	3	1.473	1.513	1.518	1.501	$-28+12+17$	1.477	1.234	1.0	$c b$
MHHPCX	100	111	$\mathrm{C}=\mathrm{O}, \mathrm{H}$	Cr, H	Cr, H	4.4	3	1.491	1.520	1.522	1.511	$-20+9+11$	1.473	1.199	2.6	cb
ARITOL ${ }^{\text {b }}$	100	121	$\mathrm{C}=\mathrm{O}, \mathrm{H}$	$\mathrm{C}, \mathrm{C} t$	Cr, H	5.5	8	1.500	1.505	1.535	1.513	$-13-8+22$	1.439	1.226	150.3	lg 3
NCUBEB10	100	121	$\mathrm{C}=\mathrm{O}, \mathrm{H}$	Cr, Cr	$\mathrm{Cr} . \mathrm{H}$	4.4	4	1.489	1.532	1.520	1.514	$-25+18+6$	1.468	1.215	-166.4	$\operatorname{tg} 2$
CPRDCA	200	200	$\mathrm{C}=0, \mathrm{C}=0$	H,H	H.H	4.3	3	1.467	1.530	1.539	1.512	$-45+18+27$	1.483	1.217	-170.4	$t b$
													1.485	1.218	-9.3	$c b$
							3	1.455	1.530	1.534	1.506	$-51+24+28$	1.483	1.218	-170.5	${ }^{\text {b }}$
													1.485	1.214	-9.4	cb
MBCPCX	200	200	$\mathrm{C}=\mathrm{O} . \mathrm{C}=\mathrm{O}$	H, H	H.H	4.9	-	1.473	1.526	1.541	1.513	$-40+13+28$	1.491	1.198	162.8	tg3/tb
													1.507	1.232	4.6	cb
CYPRCA	110	110	$\mathrm{C}=\mathrm{O}, \mathrm{H}$	$\mathrm{H}, \mathrm{C}=\mathrm{O}$	H, H	6.2	-	1.492	1.492	1.517	1.500	$-8-8+17$	1.478	1.217	-6.3	cb
													1.482	1.225	-0.0	cb
PBBSHD ${ }^{\text {a }}$	210	210	$\mathrm{C}=\mathrm{O} . \mathrm{C}=\mathrm{O}$	$\mathrm{C}=\mathrm{O}, \mathrm{H}$	H, H	$5 \cdot 8$	10	1.460	1.524	1.525	1.503	$-43+21+22$	1.496	1.210	-7.2	$c b$
													1.499	1.198	2.2	cb
													1.536	1.218	-58.6	cg3/p
EBBSHD ${ }^{\text {a }}$	210	210	$\mathrm{C}=0 . \mathrm{C}=0$	$\mathrm{C}=\mathrm{O}, \mathrm{H}$	H, H	8.2	10	1.462	1.512	1.548	1.507	$-45+5+41$	1.461	1.226	6.2	cb
													1.468	1.226	-4.0	$c b$
													1.533	1.203	-59.8	cg3/p

(a) All S^{\prime} values are equal to S values except for the final two entries, where $S^{\prime}=200$. (b) Keto group is part of extended conjugated system (see text).
seven gauche conformations is -0.023 (10) \AA; the higher r.m.s. σ (mean) in the latter case reflects the wider δ_{1} spread for gauche conformations. It would appear, therefore, that the bisected conformation (or something very close to it) represents a true minimum in the potential well, but the τ ranges observed here indicate that the well is relatively shallow and has a broad minimum, at least for carbonyls. This is in accord with results obtained by Kosower \& Ito (1962) and Goodman \& Eastman (1964).
(3) The concomitant lengthening of the vicinal bond lengths D_{2}, D_{3} is not always symmetric, even for $S=$ $100 c b$ conformations. Although many of the discrepancies ($d=D_{3}-D_{2}$) are at individual structural accuracy limits it is interesting to note that d ranges from $0.002-0.023 \AA$ (mean $0.010 \AA$) for $c b$ conformations, but the range increases for gauche conformations to $-0.014-0.040 \AA$ (mean $|d| 0.023 \AA$). The three true $g(3)$ structures (TOLIPO 10, MIKROL and AR ITOL) have D_{3}, δ_{3} maximized while the two $g(2)$ entries (CYPROT10 and NCUBEB10) have larger D_{2}, δ_{2} values.
(4) The two pure $S=200$ entries (CPRDCA and MBCPCX) show an enhancement of distal-bond shortening. The mean δ_{1} of -0.045 (6) \AA is nearly twice the value for $S=100$ indicating the approximate validity of the additivity rule for 1,1 -disubstitution. The predominant conformations are $c b$ and $t b$ and D_{2} / D_{3} asymmetry is less pronounced.
(5) CYPRCA provides the sole example of pure carbonyl $S=110$ substitution and a further test of the
additivity rule applied to 1,2 -disubstitution (Fig. 2e). With an $S=100 \delta_{1}$ of $-0.026 \AA$ and a symmetrical vicinal lengthening of $\delta_{2}=\delta_{3}=+0.013 \AA$ the rule predicts a δ sequence of $-13,-13,+26$. This compares favourably with an observed sequence of $-8,-8,+17$. The results for CYPRCA are in line with MO theory: the $3 e^{\prime}$ orbital (Fig. 1a) has the correct symmetry for interaction with two π acceptors on vicinal C atoms so long as they both adopt conformations close to the bisected position.
(6) PBBSHD and EBBSHD have $S=210$ but the effective $S^{\prime}=200$. In both cases the carbonyl at C(2) adopts (or is forced to adopt) a conformation midway between $\operatorname{cg} 3$ and p, the distance D_{4} is significantly longer than all other D_{4} values in Table 3, and there appears to be little or no conjugative overlap with the cyclopropane ring. This behaviour parallels that for CYBUTB10, noted at (2) above, which also has a relatively high D_{4} value and the smallest δ_{1} for any $S=100$ entry. Inclusion of PBBSHD and EBBSHD in the $S=$ 200 class gives a final mean δ_{1} of -0.045 (4) \AA for the class.
(7) The overall mean value of D_{4} (omitting the three $c g 3 / p$ conformations) is 1.476 (4) \AA. However, the complete substituent groups fall into two main classes: (i) simple carboxyl or keto groups; (ii) systems which are further conjugated to form $-\mathrm{C}(=\mathrm{O})-\mathrm{C}=\mathrm{C}$. The latter are denoted as (b) in Table 3 and have a mean D_{4} of 1.456 (6) \AA. This is significantly shorter than the corresponding value of 1.481 (3) \AA for the remaining compounds. These values, together with other means
calculated in this analysis, are important in comparing the conjugative ability of cyclopropane with that of a $\mathrm{C}=\mathrm{C}$ double bond. A fuller analysis of this topic is in preparation (Allen, 1979).
(8) The mean $\mathrm{C}-\mathrm{C}$ (ring) distance in Table 3 is 1.504 (3) \AA, where σ is computed from individual Δ discrepancies. The value is close to free cyclopropane values and no overall bonding effects are indicated. The mean $\mathrm{C}=\mathrm{O}$ distance is 1.218 (3) \AA.
There are relatively few pertinent gas-phase results. The ED studies of cyclopropyl methyl ketone and cyclopropylcarboxyl chloride (Bartell, Guillory \& Parks, 1965) give mean $\mathrm{C}-\mathrm{C}$ distances of 1.510 (2) and 1.506 (3) \AA respectively, but do not differentiate between distal and vicinal bonds. More recent M studies of cis- and trans-cyclopropanecarbaldehyde (Voltrauer \& Schwendemann, 1971) and of cyclopropylcarboxyl chloride (Nair \& Boggs, 1976) indicate distal bonds of 1.490 (2), 1.497 (3) and 1.489 (3) \AA, significantly shorter than the free ring value. An IR/R study of cyclopropanecarboxylic acid has vicinal bonds of 1.53 (2) \AA and a distal bond of 1.46 (2) \AA (Maillols, Tabacik \& Sportouch, 1976); although of limited accuracy, these results are in accord with the Xray values. The IR/R study also reports D_{4}, D_{5} as 1.48 (2) and 1.22 (2) \AA.

Vinyl group

The generic term vinyl is used here to describe $\Delta-\mathrm{C}=\mathrm{C}$ derivatives. While such compounds are relatively common, only nine entries have vinyl groups, $\mathrm{C}\left(s p^{3}\right)$ and H as sole substituents. The relevant data for pure vinyls are in Table 4.

Seven of the 11 interactions adopt the $c b$ or $t b$ conformations and appear to be the only clear cases of conjugative overlap, exhibiting consistent distal-bond shortening. In gauche conformations this effect is minimized, or even reversed, in contrast to the carbonyl situation. The clearcr preference for bisected conformations is, perhaps, a reflection of the relatively weak π-acceptor ability of vinyl compared to carbonyl. The results indicate that the minimum of the potential well for cyclopropane ($3 e^{\prime}$)-vinyl orbital interactions is less broad than that for carbonyl.

The mean δ_{1} for the three $t b, S=100$ entries in Table 4 is -0.022 (4) \AA, marginally less than for carbonyl. Use of this value and the additivity rule (Fig. $2 e)$ predicts a δ sequence for $S=110$ of $-11,-11$, +22 . Results for CEXVCP and OCTRCB follow this pattern but are quantitatively larger. The reverse calculation on these two compounds yields a rather high δ_{1} of $-0.040 \AA$ and a higher overall average of

Table 4. Analysis of cyclopropane $-\mathrm{C}=\mathrm{C}$ conjugation

Code	S^{a}	s	$R_{1} \cdot R_{2}$	R_{3}, R_{4}	R_{5}, R_{6}	R	σ	D_{1}	D_{2}	D_{3}	\triangle	$\delta_{1} \quad \delta_{2} \quad \delta_{3}$	D_{4}	Ds	$7^{(0)}$	Conf.
MANDAC	100	110	$\mathrm{C}=\mathrm{C}, \mathrm{H}$	H, Cr	H, H	$4 \cdot 0$	7	1.518	$1 \cdot 510$	1.512	1.513	$+5-3-1$	1.470	1.346	$-160 \cdot 1$	$\operatorname{tg} 2$
MPDECO	100	120	$\mathrm{C}=\mathrm{C}, \mathrm{H}$	C, Cr	H, H	$4 \cdot 7$	6	1.487	1.525	1.533	1.515	$-28+10+18$	1.464	1.342	-174.1	$t b$
ACXBDO	100	121	$\mathrm{C}=\mathrm{C}, \mathrm{H}$	Cl, Cl	Cr, H	$4 \cdot 3$	7	1.487	1.505	1.528	1.507	$-20-2+21$	1.470	1.330	-174.4	$1 b$
AXHBDO	100	121	$\mathrm{C}=\mathrm{C}, \mathrm{H}$	Cl, Cl	Cr, H	$3 \cdot 6$	6	1.510	1.538	1.537	1.528	$-18+10+9$	1.482	1.332	-176.5	$t b$
BERTPP	100	121	$\mathrm{C}=\mathrm{C}, \mathrm{H}$	Cl, Cl	Cr, H	$6 \cdot 3$	10	1.510	1.505	1.521	1.512	$-2-7+9$	1.512	1.362	117.6	p
DTERDP	100	121	$\mathrm{C}=\mathrm{C}, \mathrm{H}$	Cl, Cl	Cr, H	$6 \cdot 8$	20	1. 535	1.501	1.514	1.517	+18-16-3	1.489	1.350	160.7	$\operatorname{tg} 3$
TOXCNB	100	122	$\mathrm{C}=\mathrm{C}, \mathrm{H}$	Cr, Cr	Cr, Cl	$3 \cdot 5$	8	1.544	1.526	1.552	1.541	$+3-15+11$	1.467	1.348	$26 \cdot 7$	cg 3
CEXVCP	110	110	$\mathrm{C}=\mathrm{C}, \mathrm{H}$	$\mathrm{H}, \mathrm{C}=\mathrm{C}$	H, H	$12 \cdot 2$	20	1.505	$1 \cdot 507$	1.561	1.524	$-19-17+35$	1.462	1.323	178.5	$t b$
													1.457	1.321	174.5	$t b$
OCTRCB	110	111	$\mathrm{C}=\mathrm{C}, \mathrm{H}$	$\mathrm{C}=\mathrm{C}, \mathrm{H}$	Cr, H	$5 \cdot 2$	3	1.500	$1 \cdot 505$	1.570	$1 \cdot 525$	$-25-20+45$	1.458	1.325	-4.4	$c b$
													1.464	$1 \cdot 323$	4.5	$c b$

(a) $S^{\prime}=S$ for all bisected $(t b, c b)$ conformations; $S^{\prime}=000$ for MANDAC, BERTPP, DTERDP, TOXCNB.

Table 5. Analysis of cyclopropane-cyano conjugation

Distances are in \AA.																
Code	S^{a}	s	R_{1}, R_{2}	R_{3}, R_{4}	R_{5}, R_{6}	R	σ	D_{1}	D_{2}	D_{3}	\triangle	$\delta_{1} \quad \delta_{2} \quad \delta_{3}$	D_{4}	D_{5}	$\tau\left({ }^{\circ}\right)$	Conf.
DCYBUT	110	110	$\mathrm{C} \equiv \mathrm{N}, \mathrm{H}$	$\mathrm{H}, \mathrm{C} \equiv \mathrm{N}$	H, H	$5 \cdot 7$	5	1.481	1.484	1.503	1.489	$-8-5+14$	1.424	1.135	$160 \cdot 6$	tg 3
													1.424	$1 \cdot 135$	87.1	p
CYCYPR	111	111	$\mathrm{C} \equiv \mathrm{N}, \mathrm{H}$	$\mathrm{C} \equiv \mathrm{N}, \mathrm{H}$	$\mathrm{C}=\mathrm{N}, \mathrm{H}$	$2 \cdot 3$	3	1.518	1.518	1.518	1.518	$\begin{array}{rrrr}0 & 0 & 0\end{array}$	1.449	1.144	-27.2	cg3
TCYCPR	220	220	$\mathrm{C} \equiv \mathrm{N}, \mathrm{C} \equiv \mathrm{N}$	$C \equiv N, C \equiv N$	H, H	$3 \cdot 8$	4	1.501	1.506	1.561	1.523	$-22-17+38$	1.449	1.137	8.7	$c b$
													1.451	$1 \cdot 134$	$142 \cdot 2$	$\operatorname{tg} 3$
													1.445	1.141	$2 \cdot 2$	$c b$
													1.450	1.139	$-20 \cdot 6$	cg 3
TCYCPR01	220	220	$\mathrm{C} \equiv \mathrm{N}, \mathrm{C}=\mathrm{N}$	$\mathrm{C} \equiv \mathrm{N}, \mathrm{C} \equiv \mathrm{N}$	H,H	$5 \cdot 5$	2	1.515	1.512	1.558	1.529	$-14-17+30$	1.442	1.150	15.2	cg2/cb
							b	$1 \cdot 517$	1.563	1.533	1.533	$-14-16+30$	1.443	1.147	$5 \cdot 2$	$c b$
													1.445	1.149	-36.6	cg 3
													1.447	1.149	$156 \cdot 3$	tg 3
Cyanocyclopropane ${ }^{\text {c }}$	100	100	$\mathrm{C} \equiv \mathrm{N}, \mathrm{H}$	H, H	H, H	M	3	$1 \cdot 500$	1.528	1.528	1.519	$-19+9+9$	-	-	-	-

(a) $S^{\prime}=S$ for all entries. (b) $D_{1}-D_{3}$ corrected for thermal libration effects. (c) Pearson, Choplin \& Laurie (1975).
-0.029 (10) \AA. Further quantitative evidence for distal-bond shortening by vinyl is contained in the mixed-substituent analysis of Table 6 and is presented below.

Mean values of D_{4} are 1.465 (3) \AA for $t b, c b$ conformations and $1.484(10) \AA$ for g, p conformations. The mean Δ is somewhat high at 1.520 (4) \AA, while the mean $\mathrm{C}=\mathrm{C}$ is 1.336 (4) \AA. The only gasphase study (M) is of vinylcyclopropane (DeMeijere \& Luttke, 1969) where values of Δ, D_{4}, D_{5} are 1.522 (1), 1.475 (3) and 1.334 (2) \AA respectively.

Cyano group

Only four pure cyanocyclopropanes have been studied by X-ray methods, but these entries (Table 5) yield 11 separate interactions, which show a wide variety of conformations. This is to be expected, since, for the formally triply bonded CN group, the $\pm p$ conformations should also be favourable.

The substitution patterns of Table 5 require application of the additivity principle to obtain $\delta(\mathrm{CN})$. The δ_{1} values obtained for DCYBUT, TCYCPR and TCYCPR01 are $-0.015,-0.019$, and $-0.014 \AA$ respec-
tively; these compare very favourably with the microwave study of cyanocyclopropane (Pearson, Choplin \& Laurie, 1975) where δ_{1} is $-0.019 \AA$. The mean $\delta_{1}(\mathrm{CN})$ is therefore -0.017 (2) \AA. The distal-bond length in 1,1-dicyanocyclopropane has also been measured (M; Pearson, Choplin, Laurie \& Schwartz, 1975) at 1.485 \AA, a value consistent with other results.

The substitutionally and crystallographically symmetric CYCYPR contains three mutually opposing CN groups and the Δ value $[1.518$ (3) \AA] is close to freering values. The mean Δ over all rings in Table 5 is 1.515 (3) \AA, while mean D_{4} ano D_{5} are 1.443 (3) and 1.142 (3) Å respectively.

It appears that early reports of cyclopropane-cyano conjugation based on UV spectra (Rogers, 1947; Mohrbacher \& Cromwell, 1957) are entirely vindicated, although this conclusion was challenged by Cannon, Santilli \& Shenian (1959).

Mixed substituents

The pertinent data for 16 entries having mixed π acceptor substituents [together with $\mathrm{C}\left(s p^{3}\right)$ and H] are presented in Table 6. Data for phenyl substituents,

Table 6. Analysis of cyclopropane-mixed $(\mathrm{C}=\mathrm{O}, \mathrm{C} \equiv \mathrm{N}, \mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}, \mathrm{S}=\mathrm{O})$ conjugation

Code	S	s	$\boldsymbol{R}_{1}, R_{2}$	R_{3}, R_{4}	R_{5}, R_{6}	R	σ	D_{1}	D_{2}	D3	Δ	$\delta_{1} \quad \delta_{2} \quad \delta_{3}$	D_{4}	D,	$\tau\left({ }^{\circ}\right)$	Conf.	S^{\prime}
BPVBCP	110	110	$\mathrm{C}=\mathrm{O}, \mathrm{H}$	$\mathrm{H}, \mathrm{C}=\mathrm{C}$	H, H	$8 \cdot 5$	20	1.527	1.512	1.569	1.536	$-9-24+33$	1.527	1.209	7.8	cb	110
													1.467	1.380	-172.6	$t b$	
AIMCTY	110	112	$\mathrm{C}=\mathrm{O}, \mathrm{H}$	$\mathrm{C}=\mathrm{N}, \mathrm{H}$	$\mathrm{C}, \mathrm{C} t$	4.8	8	1.511	1.517	1.496	1.508	$+3+9-12$	1.474	1.237	-146.7	$\operatorname{tg} 2$	-
													1.474	1.371	35.5	cg2	
BRVCPC	110	112	$\mathrm{C}=\mathrm{O}, \mathrm{H}$	$\mathrm{C}=\mathrm{C}, \mathrm{H}$	Ct, Ct	4.4	20	1.495	1.488	1.532	1.505	$-10-17+27$	1.474	$1 \cdot 172$	7.3	cb	110
													1.496	1.296	175.3	$t b$	
CLVCPC	110	112	$\mathrm{C}=\mathrm{O}, \mathrm{H}$	$\mathrm{C}=\mathrm{C}, \mathrm{H}$	Ct, Cl	6.9	22	1.481	1.485	1.494	1.487	$\begin{array}{lll}-6 & -2+7\end{array}$	1.497	$1 \cdot 167$	0.7	cb	110
													1.474	1.349	176.9	$t b$	
PXBVCP10	110	112	$\mathrm{C}=\mathrm{O}, \mathrm{H}$	$\mathrm{C}=\mathrm{C}, \mathrm{H}$	Ct, Ct	7.0	40	1.493	1.457	1.508	1.486	$+7-29+22$	1.449	1.225	$4 \cdot 1$	cb	110
													1.413	1.317	$-126 \cdot 3$	$\operatorname{tg} 2 / p$	
MAPCTD	111	211	$\mathrm{C}=\mathrm{O}, \mathrm{C} c$	$\mathrm{C}=\mathrm{C}, \mathrm{H}$	$\mathrm{C}=\mathrm{C}, \mathrm{H}$	$4 \cdot 6$	8	1.505	1.510	1.515	$1 \cdot 510$	$-50+5$	1.462	1.223	$-1 \cdot 1$	$c b$	111
													1.469	1.298	30.6	cg 2	
													1.491	1.298	-30.4	cg 3	
SRMTPX	210	210	$\mathrm{C}=\mathrm{O} . \mathrm{C}=\mathrm{O}$	$\mathrm{S}=\mathrm{O} . \mathrm{H}$	H.H	$6 \cdot 3$	9	1.462	1.503	1.491	1.485	$-23+18+6$	1.506	$1 \cdot 193$	-12.2	cb	100
													1.505	1.193	-86.3	p	
													1.805	1.462	-19.5	cg 3	
SSMTPX	210	210	$\mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{O}$	$\mathrm{S}=\mathrm{O}, \mathrm{H}$	H, H	$5 \cdot 0$	6	1.475	$1 \cdot 511$	1.511	1.499	$-24+12+12$	1.475	1.197	149.7	$\operatorname{tg} 3$	100
													1.514	1.189	-52.2	$\operatorname{cg} 3 / p$	
													1.766	1.485	-122.5	ıg2/p	
SPTZBN	200	211	$\mathrm{C}=\mathrm{O}, \mathrm{N}=\mathrm{N}$	Cr, H	Cr, H	$6 \cdot 2$	5	1.470	1.532	1.529	1.510	$-40+22+19$	1.474	1.203	2.6	$c b$	200
													1.422	1.254	176.9	$t b$	
MOXSOC	210	221	$\mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{C}$	$\mathrm{C}=\mathrm{O}, \mathrm{Cr}$	Cr. H	$3 \cdot 6$	4	1.511	$1 \cdot 521$	1.518	1.517	$-6+4+1$	1.503	1.205	-156.1	$\operatorname{tg} 2$	-
													1.503	1.334	-23.1	cg 3	
													1.478	1.201	7.8	cb	
MCMDOD	210	222	$\mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{C}$	$\mathrm{Cr}, \mathrm{C}=\mathrm{C}$	$\mathrm{Ct} . \mathrm{Ct}$	$6 \cdot 2$	8	1.507	1.559	1.549	1.538	$-31+21+11$	1.497	1.206	8.7	cb	100
													1.486	1.356	37.7	cg 2	
													1.496	1.336	-21.1	cg 3	
CYTCOD 10	111	211	$\mathrm{C} \equiv \mathrm{N} . \mathrm{Cr}$	$\mathrm{C}=\mathrm{C}, \mathrm{H}$	$\mathrm{C}=\mathrm{C}, \mathrm{H}$	$5 \cdot 6$	3	1.569	$1 \cdot 504$	1.501	1.525	$+45-21-24$	1.438	1.143	-158.4	tg2	-
													1.472	1.317	22.8	cg2	
													1.467	1.323	-22.1	cg3	
MCCARD	211	211	$\mathrm{C} \equiv \mathrm{N}, \mathrm{C} \equiv \mathrm{N}$	$\mathrm{C}=\mathrm{C}, \mathrm{H}$	$\mathrm{C}=\mathrm{C} . \mathrm{H}$	3.9	3	1.500	1.554	1.558	1.537	$-37+17+21$	1.436	1.153	-65.9	$\operatorname{cg} 3 / p$	200
													1.436	1.148	57.4	cg $2 / p$	
													1.485	1.348	32.7	cg 2	
													1.475	1.353	-31.4	cg 3	
TCHRBA	110	112	$\mathrm{C}=\mathrm{C}, \mathrm{H}$	$\mathrm{H}, \mathrm{C}=\mathrm{N}$	Ct, Cl	10.9	50	1.448	1.442	1.493	1.461	$-13-19+32$	1.396	1.305	-169.9	$t b$	110
													1.321	1.358	171.2	$t b$	
EBMZDC	200	211	$\mathrm{N}=\mathrm{N}, \mathrm{C}=\mathrm{N}$	Cr, H	H, Cr	$9 \cdot 3$	20	1.510	1.548	1.527	1.528	$-18+20-1$	1.439	1.255	33.6	cg 2	100
													1.431	$1 \cdot 280$	6.4	$c b$	
								1.505	1.490	1.485	1.493	$\begin{array}{llll}12 & -3 & -8\end{array}$	1.496	1.232	32.6	cg2	-
													1.436	1.284	10.3	$c b$	
CPSCPA 10	100	121	$\mathrm{S}=\mathrm{O}, \mathrm{H}$	Cl, Cl	$\mathrm{N} t . \mathrm{H}$	$3 \cdot 7$	4	1.490	1.506	$1 \cdot 524$	1.507	$-17 \quad 0+17$	1.771	1.493	-114.1	p	-

which always occur in conjunction with other acceptor or donor substituents, are presented separately (Tables 7 and 10). The following trends and results are obtained from Table 6:
(1) There are four $\mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{C}$ combinations for $S=110$ (BPVBCP, BRVCPC, CLVCPC and PXBVCP10). From individual δ values established above $\left(\delta_{2}=\delta_{3}=-\delta_{1} \times 0 \cdot 5\right.$, i.e. symmetric vicinal lengthening), the additivity rule gives $\delta(110)$ of -15 , $-9,+24$. Although individual observed values vary, the mean observed δ sequence is $-6,-18,+22$, in good agreement with the derived trend.
(2) MAPCTD appears to mimic CYCYPR (Table 5) in having three mutually opposing interactions, nearzero δ values, and a Δ of 1.510 (8) \AA. This occurs even though the two vinyl groups are gauche, an unfavourable vinyl conformation from the results of Table 4.
(3) The sulphonyl derivatives, SRMTPX and SSMTPX exhibit almost perfect $S^{\prime}=100(\mathrm{C}=\mathrm{O})$ behaviour. In both cases the second $\mathrm{C}=\mathrm{O}$ approaches the unfavourable p conformation, while $p \pi-d \pi$ overlap with $S=O$ appears to be minimal. The latter observation is not contradicted by results for the other $S=0$ derivative (CPSCPA10) which has a rather indeterminate δ pattern.
(4) Results for SPTZBN clearly indicate a π acceptor interaction with $\mathrm{N}=\mathrm{N}$ in the $t b$ conformation. A $\delta(\mathrm{NN})$ sequence of $-14,+7,+7$ may be derived from the additivity rule.
(5) Data for TCHRBA appear to implicate $\mathrm{C}=\mathrm{N}$ $(t b)$ in an $S=110$ interaction. A $\mathbf{C}=\mathbf{N}(t b)$ interaction also appears to determine the asymmetry in molecule (1) of EBMZDC. However, the two derived $\delta(\mathrm{C}=\mathrm{N})$ sequences differ markedly and no realistic values can be given.
(6) For MCMDOD and MCCARD the vinyl groups all appear to be in unfavourable gauche conformations [Table 4, but see (2) above]. MCMDOD exhibits almost perfect $S^{\prime}=100(\mathrm{C}=\mathrm{O})$ behaviour, while MCCARD $\left[S^{\prime}=200,(\mathrm{CN})\right]$ gives a $\delta_{1}(\mathrm{CN})$ of $-0.018 \AA$ in excellent agreement with results deduced from Table 5.
(7) Remaining entries in Table 6 exhibit indeterminate or contradictory results. The most notable is cyanosemibullvalene (CYTCOD10) where the authors conclude that intramolecular non-bonded interactions outweigh the conjugative effect in this highly bridged molecule and account for the anomalous δ sequence.

Phenyl group (φ)

The effect of phenyl substituents has been examined by Lauher \& Ibers (1975) and Jason \& Ibers (1977) from a limited data set containing a high proportion of phenyl,halogen mixed substituents. These acceptordonor combinations will be discussed in a later section.

There are no examples of pure phenyl substitution in the current database. Table 7 presents results for 17 (φ, $A=B$) acceptor combinations; a small subset having (φ, $\mathrm{P}=\mathrm{O}$) disubstitution at $\mathrm{C}(1)$ are given in Table 7(b). In all cases the additivity rule is required to obtain $\delta(\varphi)$ sequences. The trends exhibited in Table 7 are not so clear as in other analyses, but some conclusions may be drawn:
(1) NPCPMK, SDPPCX and PMCPCR 10 are the only pure $\varphi, \mathrm{C}=\mathrm{O}$ combinations. Using $\delta(\mathrm{C}=\mathrm{O})$ of $-26,+13,+13$ we obtain $\delta(\varphi)$ as indicated in Table 7. These values agree well and give a mean δ_{1} of -0.018 (2) \AA. However, NPCPMK adopts the expected b conformation, while SDPPCX and PMCPCR 10 are p. Since the p conformation offers no possibility of a π-acceptor interaction with cyclopropane $3 e^{\prime}$ orbitals the only explanation lies in donation of φ electron density into unfilled $4 e^{\prime}$ orbitals (see the discussion on bonding above). This mechanism is that proposed by Jason \& Ibers (1977).
(2) CPBTSX shows a typical $S=110 \delta$ sequence, from which $\delta(\mathrm{NC})=-18,+9,+9$. Application of these values to CPXZSH10 and TPXZSH10 is complex, since a φ interaction at $\tau=-55$ or -41° seems unlikely. Both $S^{\prime}=200$ and $S^{\prime}=210$ give reasonable δ_{1} agreement, but $S^{\prime}=210$ gives the best overall δ_{n} agreement. There is, however, some evidence for a φ interaction at $\tau \simeq 50^{\circ}$ in EXPPCA, which has a somewhat distorted $S^{\prime}=110 \delta$ sequence.
(3) The diversity of other substitution patterns in Table 7(a) is such that no consistent trends can be observed and no further firm conclusions drawn.
(4) The results of Table $7(b)$ fall into two distinct groups (assuming $\mathrm{P}=\mathrm{O}$ as a possible interacting substituent) with $S^{\prime}=200$ and $S^{\prime}=211$. The former group yields fairly consistent $\delta(\mathrm{P}=\mathrm{O}, \varphi)$ and a δ_{1} ($\mathrm{P}=\mathrm{O}, \varphi$) of -0.028 (7) \AA. Application of these results to $S^{\prime}=211$ entries, and with some vinyl overlap at $\tau \simeq$ $\pm 30^{\circ}$, would predict a δ sequence of $+4,+3,+3$; the observed mean $\delta(211)$ is $+1,+5,-5$. The consistency shown in Table 7(a) is possibly indicative of some small cyclopropane $-\mathrm{P}=\mathrm{O}$ interaction with a δ_{1} of $c a-0.01$ \AA. The p conformation is uniformly adopted by all φ rings in Table $7(b)$, presumably because steric interactions prohibit b conformers.
(5) The mean Δ for all rings in Table 7 is 1.517 (3) \AA; the mean D_{4} for phenyl substituents in the b or p conformations is 1.502 (3) \AA. The mean $\mathrm{C}-\mathrm{P}, \mathrm{P}=\mathrm{O}$ distances (Table $7 b$) are 1.782 (4) and 1.456 (4) \AA.

Interaction of cyclopropane with electron-donating substituents

There are relatively few X-ray entries having only electron-donor substituents, together with $\mathrm{C}\left(s p^{3}\right)$ and H. Most of these are pure Cl derivatives. The relevant

Table 7. Analysis of cyclopropane $-($ phenyl, $A=B)$ and cyclopropane $-(\mathbf{P}=\mathbf{O}$, phenyl, $A=B)$ mixed interactions

Code	S	s	R_{1}, R_{2}	R_{3}, R_{4}	R_{s}, R_{6}	R	σ	D_{1}	D_{2}	D_{3}	Δ	$\delta_{1} \quad \delta_{2} \quad \delta_{3}$	D_{s}	Ds	τ°)	Conf.	S^{\prime}
(a) Cyclopropane-(phenyl, $A=B$)																	
NPCPMK	110	110	$\mathrm{C}=\mathrm{O}, \mathrm{H}$	H, Ph	H, H	9.2	10	1.474	1.488	1.513	1.492	$-18-4+21$	1.469	1.234	$8 \cdot 6$	cb	110
												$-16+8+8^{a}$	1.501	1.379	$4 \cdot 3$	b	
CPBTSX	110	120	$\mathrm{N}=\mathrm{C}, \mathrm{Cr}$	Ph, H	H, H	4.9	4	1.503	1.498	1.530	1.510	-7 $\cdot 12+20$	1.434	1.257	158.4	193	110
													1.478	1.387	70.4	p	
EXPPCA	110	121	$\mathrm{C}=\mathrm{O}, \mathrm{H}$	Ph, Cr	Cr, H	7.0	7	1.530	1.517	1.547	1.531	$-1-14+16$	1.480	1.206	11.8	cb	110
													1.472	1.380	-50.0	-	
CPXZSH 10	210	210	$\mathrm{C}=\mathrm{O}, \mathrm{N}=\mathrm{C}$	Ph, H	H, H	4.5	7	1.471	1.500	1.547	1.506	$-35-6+41$	1.461	1.223	$6 \cdot 0$	$c b$	210
													1.435	1.275	171.6	$t b$	or
													1.487	1.372	-55.0	-	200
TPXZSH10	210	210	$\mathrm{C}=\mathrm{O}, \mathrm{N}=\mathrm{C}$	H, Ph	H.H	4.5	3	1.477	1.511	1.547	$1 \cdot 512$	$-35-1+35$	1.473	1.195	-3.3	$c b$	210
													1.426	1.268	-176.4	$t b$	or
													1.488	1.389	-40.8	-	200
SDPPCX	210	210	Ph, Ph	$\mathrm{C}=\mathrm{O} . \mathrm{H}$	H.H	$4 \cdot 3$	5	1.510	1.482	1.533	$1 \cdot 505$	$-5-23+28$	1.510	$1 \cdot 386$	$86 \cdot 6$	p	210
												$-18+9+9^{a}$	1.509	1.377	71.2	p	
													1.469	1.210	-5.5	cb	
PMCPRC 10	210	220	Ph, Ph	$\mathrm{C}=\mathrm{O} . \mathrm{Cl}$	H.H	3.7	4	$1 \cdot 504$	1.489	1.548	1.514	$-10-25+34$	1.504	1.386	72.0	p	210
												$-19+9+10^{\circ}$	1.512	1.379	-85.9	p	
													1.484	1.204	-21.2	cg 3	
SINDNC	211	211	$\mathrm{C}=\mathrm{C}, \mathrm{Ph}$	$\mathrm{C}=\mathrm{C}, \mathrm{H}$	$\mathrm{C}=\mathrm{C}, \mathrm{H}$	5.7	5	$1 \cdot 520$	1.533	1.535	1.529	$-9+4+6$	1.476	1.340	-177.6	$t b$	-
													1.479	1.394	-1.8	b	
													1.465	1.331	-25.8	cb3	
													1.471	1.326	28.4	cg 2	
MTPHEX	211	212	$\mathrm{C}=\mathrm{O}, \mathrm{Ph}$	$\mathrm{C}=\mathrm{C}, \mathrm{H}$	Ph,Oc	$6 \cdot 0$	10	$1 \cdot 527$	1.525	$1 \cdot 512$	1.521	+6 +4-9	1.523	1.216	-143.0	tg 2	-
													1.478	1.381	-59.4	-	
													1.470	1.338	-27.0	cg 3	
													1.478	1.381	48.6	-	
PBTCOU	221	221	$\mathrm{C}=\mathrm{O}, \mathrm{Ph}$	$\mathrm{C}=\mathrm{C}, \mathrm{Ph}$	Ph, H	$3 \cdot 5$	5	1.499	1.540	1.552	1.530	$-31+10+22$	1.475	1.203	-156.6	$\operatorname{tg} 2$	-
													1.499	1.386	87.3	p	
													1.477	1.304	-23.2	cg 3	
													1.490	1.396	-30.5	cg 3	
													1.473	1.396	28.4	cg 2	
(b) Cyclopropane-($\mathrm{P}=\mathrm{O}$, phenyl, $A=B)$																	
MPBTCD 10	200	200	$\mathrm{P}=\mathrm{O}, \mathrm{Ph}$	Cr, H	Cr,II	$3 \cdot 0$	7	1.493	1.526	1.528	1.516	$-23+10+12$	1.762	1.477	$-103 \cdot 3$		200
													1.514	1.409	-26.0	$\operatorname{cg} 3$	
PBOPOS	200	200	$\mathrm{P}=\mathrm{O}, \mathrm{Ph}$	Cr, H	Cr, H	$6 \cdot 3$	12	1.483	1.530	1.534	1.516	$-33+14+18$	1.784	1.448	0.0	cb	200
													1.510	1.394	-88.7	p	
MOPOPB	200	200	$\mathrm{P}=\mathrm{O}, \mathrm{Ph}$	Cr, H	Cl, H	$4 \cdot 7$	6	1.486	1.523	1.511	1.507	$-21+16+5$	1.788	1.460	-97.1	p	200
													1.498	1.378	-73.7	p	
EXPOCP	210	210	$\mathrm{P}=\mathrm{O}, \mathrm{Ph}$	$\mathrm{C}=\mathrm{C}, \mathrm{H}$	Cr, H	$4 \cdot 5$	6	1.469	$1 \cdot 522$	1.526	1.506	$-37+16+20$	1.781	1.454	-11.7	$c b$	200
													1.511	1.388	87.7	p	
													1.496	1.325	88.3	p	
MBPNCP	211	211	$\mathrm{P}=\mathrm{O}, \mathrm{Ph}$	$\mathrm{C}=\mathrm{C}, \mathrm{H}$	$\mathrm{C}=\mathrm{C}, \mathrm{H}$	5.7	17	1.549	1.552	1.528	1.543	$+6+9-15$	1.782	1.442	10.6	$c b$	211
													1.511	1.390	88.1	p	
													1.495	1.329	-31.7	cg 3	
													1.479	1.327	28.8	cg2	
MCPNCP	211	211	$\mathrm{P}=\mathrm{O}, \mathrm{Ph}$	$\mathrm{C}=\mathrm{C}, \mathrm{H}$	$\mathrm{C}=\mathrm{C}, \mathrm{H}$	$3 \cdot 8$	5	1.517	1.528	1.530	1.525	$-8+3+5$	1.791	1.458	-21.3	cg 3	211
													1.492	1.384	89.3	p	
													1.450	$1 \cdot 320$	-29.8	cg 3	
													1.463	1.318	28.2	cg 2	
MXPCAR	211	211	$\mathrm{P}=\mathrm{O}, \mathrm{Ph}$	$\mathrm{C}=\mathrm{C}, \mathrm{H}$	$\mathrm{C}=\mathrm{C}, \mathrm{H}$	$4 \cdot 1$	4	1.535	1.533	1.525	1.531	$+4+2-6$	1.785	1.456	10.0	$c b$	211
													1.494	1.392	-88.6	p	
													1.475	1.338	-26.7	cg 3	
													1.468	1.340	28.1	cg2	

Table 8. Interaction of cyclopropane with strong electron donors

Code	S	s	R_{1}, R_{2}	R_{3}, R_{4}	R_{s}, R_{6}	R	σ	D_{1}	D_{2}	D_{3}	Δ	$\delta_{1} \quad \delta_{2} \quad \delta_{3}$	$D_{4}{ }^{\text {a }}$	Ds	$\tau\left({ }^{\circ}\right)$	Conf.
1,1-Difluoro-	200	200	F,F	H, H	H, H	M^{6}	2	1.553	1.464	1.464	1.494	+59-30-30	1.355	-	-	
1,2,3-Trifluoro-	111	111	F. H	F, H	F.H	$\mathrm{M}^{\text {c }}$	3	1.505	1.505	1.505	1.505	000	1.354	-	-	
Hexafuoro-	222	222	F,F	F,F	F,F	$\mathrm{M}^{\text {d }}$	1	1.507	1.507	1.507	1.507	0000	1.314			
FMPRPY	200	211	F,F	$\mathrm{C}=\mathrm{C}, \mathrm{H}$	Cc, H	$6 \cdot 5$	10	1.573	1.450	1.450	1.491	+82-41-41	$\begin{aligned} & 1.374 \\ & 1.500 \end{aligned}$	1.341	139.9	$\operatorname{tg} 3$
FMHIPR	200	211	F,F	$\mathrm{C}=\mathrm{C}, \mathrm{H}$	Cc. H	$5 \cdot 7$	8	$1 \cdot 520$	1.444	1.465	1.476	+44-32-11	$\begin{aligned} & 1.355 \\ & 1.490 \end{aligned}$	$1 . \overline{317}$	$\overline{140.7}$	$\operatorname{tg} 3$
TFPRBA	220	222	F,F	F,F	$\mathrm{C}=\mathrm{C}, \mathrm{Cc}$	$7 \cdot 7$	-	$1 \cdot 516$	1.458	1.456	1.477	+ $39-19-21$	$\begin{aligned} & 1.337 \\ & 1.516 \end{aligned}$	1.328	$-\overline{114} \cdot 4$	p
Cyclopropanone	100	100	$=0$	H, H	H, H	$\mathrm{M}^{\text {e }}$	2	1.575	1.475	1.475	1.508	+67-33-33	1.191	-	-	
Methylene-	100	100	$=\mathrm{C}$	H, H	H, H	$\mathrm{M}^{\text {f }}$	1	1.542	1.457	1.457	1.485	+57-28-28	1.332	-	-	
ACMYCR	100	100	$=\mathrm{C}$	H, H	H, H	6.6	18	1.517 1.519	1.479 1.437	1.463 1.459	1.486 1.472	$+31-7-23$ $+47-35-13$	1.404 1.440	-	-	
MCPRAC	111	111	$=\mathrm{C}$	$\mathrm{C}=\mathrm{O}, \mathrm{H}$	$\mathrm{C}=\mathrm{O}, \mathrm{H}$	17.0	-	1.545	1.490	1.491	1.509	+ $36-19-18$	1.316 1.480	1.254	- $-161 \cdot 1$	$\operatorname{tg} 2$
												-9+12-4	1.482	1.265	23.5	cg 2

(a) Mean D_{4} values are given for multiple donor substitution. (b) Perretta \& Laurie (1975). (c) Gillies (1976). (d) Chiang \& Bernett (1971). (e) Pochan, Baldwin \& Flygare (1969). (f) Laurie \& Stigliani (1970).

Table 9. Asymmetry in chlorocyclopropanes

Distances are in A .														
Code	S	s	R_{1}, R_{2}	R_{3}, R_{4}	R_{5}, R_{6}	R	\cdots	D_{1}	D_{2}	D_{3}	Δ	$\delta_{1} \quad \delta_{2} \quad \delta_{3}$	$D_{4}{ }^{\text {a }}$	S^{\prime}
(a) Gas phase results														
Monochloro-	100	100	Cl, H	H,H	H, H	M°	4	1.514	1.513	1.513	1.513	$+100$	1.740	-
1.1-Dichloro-	200	200	Cl, Cl	H, H	H, H	ED ${ }^{\text {c }}$	4	1.510	1.510	1.510	1.510	$0{ }_{0} 00$	1.758	-
1,1 Dichloro-	200	200	Cl, Cl	H, H	H, H	$\mathrm{M}^{\text {d }}$	4	1.534	1.532	1.532	1.533	$\begin{array}{llll}1 & -1 & -1\end{array}$	1.734	$\overline{-}$
1,1 Dichloro-	200	200	Cl, Cl	H, H	H, H	N e	-	1.544	1.480	1.480	1.501	+42-21-21	1.756	200
Hexachloro-	222	222	Cl, Cl	Cl, Cl	$\mathrm{Cl} . \mathrm{Cl}$	$E D^{f}$	9	1.514	1.513	1.513	1.513	$+100$	1.734	222
(b) X-ray results														
$\begin{aligned} & \text { CMODOD } \\ & \text { CPOBOC } 10 \end{aligned}$	200	211	Cl, Cl	Cr, H	Cr. H	$4 \cdot 3$	5	1.546	1.496	1.495	1.512	+ $34-16-17$	1.760	200
	200	211	Cl, Cl	Cr, H	Cr, H	8.9	20	1.529	1.476	1.465	1.490	+ $39-14-25$	1.776	200
								1.524	1.488	1.508	1.507	$+17-19+1$	1.755	200
EOCNON10	200	211	Cl, Cl	Cr, H	Cr, H	4.0	4	1.519	1.488	1.489	1.499	+ 20-11-10	1.762	200
CMCPYE	200	221	Cl, Cl	Ct, Ct	Cr.H	$4 \cdot 0$	5	1.517	1.483	1.502	1.501	$+16-18+1$	1.750	200
MTCBPR	200	221	Cl, Cl	Ct, Cl	Cr, H	$5 \cdot 1$	2	1.537	1.503	1.507	1.516	+21-13-9	1.760	200
CTCYOC	200	222	Cl, Cl	Cr, Cr	Cr, Cr	6.5	12	1.571	1.457	1.457	1.495	+76-38-38	1.760	200
ACCCYP	211	222	Cl, Cl	Cl, Cr	Cl, Cr	6.5	10	1.516	1.498	1.485	1.500	+16 - 2 - -15	1.748	211
CLPXCN	211	222	Cl, Cl	Cl, Cr	Cl, Cr	5.1	7	1.515	1.512	1.498	1.508	$+7+4-10$	1.749	211

(a) The mean $D_{4}(\mathrm{C}-\mathrm{Cl})$ is given. The overall mean $D_{4}(\mathrm{X}$-ray) is 1.758 (4) A. (b) Schwendemann, Jacobs \& Krigas (1974). (c) Alekseev, Barzdain \& Shostakovskii (1972). (d) Flygare, Narath \& Gwinn (1962). (e) Cole \& Gilson (1975). (f) Barzdain, Fracheva \& Alekseev (1972).
gas-phase and X-ray data for known strong electron donors are collected in Table 8; data for Cl derivatives are in Table 9.

The M studies of the $=\mathrm{O},=\mathrm{CH}_{2}$ and F_{2} derivatives have δ_{1} values of $+0.067,+0.057$ and $+0.060\left(\mathrm{~F}_{2}\right)$. The X-ray data are sparse, and not directly comparable, since π-acceptor substituents are often present. However, conjugative vinyl overlap is doubtful in the three fluorinated steroids, and asymmetry in FMPRPY and FMHIPR is in the expected direction, with a mean close to the gas-phase result. Results for TFPRBA are not as predicted by the additivity rule $(\delta=+30,+30$, -60). Results for ACMYCR follow the correct pattern but asymmetry is less than for methylenecyclopropane due to the π interaction with Rh. Results for TPCYPR 10 show a δ sequence approaching zero, as expected for three symmetric and opposing substituents, and the Δ value of 1.451 (4) \AA reflects the substantial rehybridization of the ring C atoms.

The results for chlorocyclopropanes are of more interest. The early ED and M studies indicated that Cl did not produce any bond-length asymmetry (entries 3 and 5, Table 9), but significant asymmetry was detected in a NMR study (Cole \& Gilson, 1975). In their study of fluorocyclopropanes, Deakyne, Allen \& Craig (1977) suggest that this latter structure is more likely to be correct on theoretical grounds; this is borne out by the X-ray results. The seven dichloro derivatives all show a consistent lengthening of the distal bond. If the anomalously high result for CTCYOC is omitted, a mean $\delta_{1}\left(\mathrm{Cl}_{2}\right)$ of +0.024 (9) \AA is obtained. Since the additivity rule predicts that $S=211$ entries should behave as $S=100$, the results for ACCCYP and CLPXCN are in accord with the other entries. A final mean $\delta_{1}\left(\mathrm{Cl}_{2}\right)$ of $+0.025(7) \AA$ is obtained from all entries except CTCYOC.

Several mixed acceptor-donor substituted rings exist in the X-ray literature, but no acceptable subset exists for acceptor-donor groups except those involving phenyl group(s) and (usually) halogens. Results for this subset are collected in Table 10 , in which S, S^{\prime} are meaningless and are omitted. The following points may be made:
(1) DCDPCP shows a shortening of the distal bond opposite the φ_{2} groups and a lengthening of the distal bond opposite Cl_{2}. This is to be expected since both φ groups are in the p conformation. The additivity rule predicts a δ sequence of $-49,+4,+5$, which is qualitatively correct but more than double the observed values.
(2) DBDPCP, DNPCPR and BRTCTP indicate that Br plays little or no part as a donor substituent. DBDPCP has a δ sequence that is qualitatively correct for two phenyl-cyclopropane ($4 e^{\prime}$) orbital interactions, having both φ groups approximately perpendicular. In BNPCPR and BRTCTP the φ groups appear to be in unfavourable conformations giving nearly symmetric rings and Δ values close to those for the free ring.
(3) In TPCLPR the φ conformations are favourable and the additivity rule would predict $\delta_{n}=+4$, $-16,+11$, remarkably (and fortuitously?) close to experimental values for both independent molecules.
(4) Results for CPMOIC 10 are qualitatively similar to those for DCDPCP and indicate distal lengthening of $c a+0.024 \AA$ opposite the dioxa substituents. There is further evidence for distal lengthening by oxa substituents in XMTOIB, PORBET 10 and MOAOSP 10.

Summary and conclusions

This work presents a review of the geometry of cyclopropane in 91 compounds having electron-accepting or

Table 10. Analysis of cyclopropane-(phenyl,donor) mixed substitutions

Code	s	$\boldsymbol{R}_{\mathrm{t}}, \mathrm{R}_{2}$	R_{3}, R_{4}	R_{5}, R_{6}	R	σ	D_{1}	D_{2}	D_{3}	Δ	$\delta_{1} \quad \delta_{2}$	δ_{3}	D_{4}	Ds	$\tau\left({ }^{\circ}\right)$	Conf.
CPMOIC 10	120	Ph, H	O,O	H, H	6.9	15	1.478	1.542	1.507	1.509	$-31+33$		1.452	1.403	-31.9	cg 3
CPCCYP	220	Ph, Ph	Cl, Cl	H, H	$6 \cdot 1$	10	1.484	1.473	1.472	1.476	$+8-3$	-4	1.498	1.396	-78.4	p
													1.498	1.406	79.7	p
							1.546	1.517	1.543	1.535	$+11-18$	+8	1.507	1.371	-85.1	p
													1.526	1.387	81.8	p
DCDPCP.	220	Ph, Ph	Cl, Cl	H, H	$3 \cdot 4$	3	1.490	1.529	1.519	1.513	$-23+16$		1.495	1.387	77.8	p
													1.505	1.389	-71.9	p
DBDPCP	220	Ph, Ph	Br, Br	H, H	$3 \cdot 5$	6	1.476	1.507	$1 \cdot 509$	1.497	$-21+10+12$		1.509	1.389	-73.2	p
													1.493	1.381	77.8	p
BNPCPR	112	Ph, H	H, Ph	Br, Br	3.5	6	1.515	1.515	1.516	1.515	00	$+1$	1.492	1.387	-51.7	
													1.492	1.387	51.7	-
BRTCTP	112	Ph, H	H, Ph	Br, Br	$2 \cdot 8$	5	1.515	1.515	1.518	1.516	$\begin{array}{ll}-1 & -1\end{array}$		1.487	1.392	-48.0	-
													1.487	1.392	48.0	-
TPCLPR	211	Ph, Cl	Ph, H	\triangle, H	$5 \cdot 0$	6	1.523	1.506	1.519	1.516	+ $7-10$		1.476	1.392	-16.4	$b / c g 3$
													1.478	1.379	77.3	p
							1.519	1.501	1.526	1.515	$+4-14+11$		1.490	1.379	-37.4	cg 3
													1.494	1.388	83.9	p
CLXBHP10	211	Ph, Cl	Or.H	Or, H	6.8	4	1.492	1.505	1.519	1.505	-130	+14	1.473	1.374	$-87 \cdot 7$	p

Table 11. Results of the analysis

δ_{1} values (\AA)			
$\mathrm{C}=\mathrm{O}$	$-0.026(5)$	$\mathrm{C} \equiv \mathrm{N}$	$-0.017(2)$
$\mathrm{C}=\mathrm{C}$	$-0.022(4)$	$\mathrm{N}=\mathrm{N}$	$-0.014(-)$
$\mathrm{N}=\mathrm{C}$	$-0.018(-)$	Phenyl	$-0.018(2)$
$\mathrm{Cl} \mathrm{C}_{2}$	$+0.025(7)$	F_{2}	$+0.060(-)$

Mean bond lengths (\AA)

Substituent	Table	$\bar{\Delta}$	\bar{D}_{4}	\bar{D}_{5}
$\mathrm{C}=0$	3	1.504 (3)	1.456 (6)	1.218 (3)
			1.481 (3)	
$\mathrm{C}=\mathrm{C}$	4	1.520 (4)	1.465 (3)	1.336 (4)
			1.484 (10)	
$\mathrm{C} \equiv \mathrm{N}$	5	1.515 (3)	1.443 (3)	$1 \cdot 142$ (4)
Mixed acceptor	6	1.508 (3)	-	-
Phenyl	7	1.517 (3)	1.502 (3)	1.387 (4)
Cl donor	9	1.503 (3)	1.759 (4)	-
Mixed donor	10	1.509 (4)	(-
Overalla		1.510 (2)	88 rings	
(a) Inclusion	27	$\begin{aligned} & \text { unsubstitut } \\ & \bar{\Delta}=1.5095 \end{aligned}$	rings (see 7) \AA.	text) gives

-donating substituents attached to the ring. A further 27 compounds having only $\mathrm{C}\left(s p^{3}\right)$ or H substituents were used to establish a mean $\mathrm{C}-\mathrm{C}$ (ring) distance. A further 28 compounds with $R \leq 0 \cdot 100$ were omitted because they have unique substitution patterns or because the ring forms part of a highly bridged system, so that steric interactions dominate their geometry. Observed substituent-induced bond-length asymmetry has been examined in the light of current theoretical treatments of ring-substituent orbital overlap. Although individual bond-length asymmetries are often quantitatively small, there are self-consistent and statistically significant trends to support the following conclusions:
(1) There is ample evidence that electron density is transferred from cyclopropane $3 e^{\prime}$ orbitals to low-lying
π orbitals of $\mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{C}$ and $\mathrm{C} \equiv \mathrm{N}$. This shortens the distal ring bond and lengthens the vicinal bonds. Mean values for the distal-bond shortening $\left(\delta_{1}\right)$, relative to the mean $\mathrm{C}-\mathrm{C}$ ring distance (4) are in Table 11, together with other relevant averages. The bisected conformation dominates $\mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{C}$ interactions and yields symmetric vicinal lengthening of one half the absolute value of δ_{1}. The $\mathrm{C}=\mathrm{O}$ interaction is best characterized and shows a broad minimum in the potential well corresponding to τ ranges of $\pm 30^{\circ}$ about the $c b$ and $t b$ positions. Pronounced asymmetry of vicinal bonds is observed as the τ limits are approached. There is some evidence to suggest that the minimum of the $\mathrm{C}=\mathrm{C}$ potential well is less broad.
(2) There is some evidence for a similar acceptor mechanism for $\mathrm{N}=\mathrm{N}, \mathrm{N}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$ substituents although no δ_{1} value was obtained for the latter.
(3) The relative acceptor effectiveness is in the order $\mathrm{C}=\mathrm{O}>\mathrm{C}=\mathrm{C}>\mathrm{N}=\mathrm{C} \simeq \mathrm{C} \equiv \mathrm{N}>\mathrm{N}=\mathrm{N}$.
(4) Phenyl substituents appear to cause distal-bond shortening in both b and p conformations and have δ_{1} approximately equivalent to that for $\mathrm{C} \equiv \mathrm{N}$. The p conformation dominates, presumably due to steric interactions, and donation of electron density from phenyl to cyclopropane $4 e^{\prime}$ orbitals is presumed to account for the effectiveness of this conformation.
(5) Electron-donor substituents having orbitals of the necessary symmetry to interact with the cyclopropane $1 a_{2}^{\prime}$ orbital cause distal-bond lengthening and vicinal shortening, in contradiction to the simple MO model. The observed geometries agree well with more recent theoretical models for donor substituents (Deakyne et al., 1977).
(6) The effectiveness of Cl as an electron donor is established and a δ_{1} value of +0.026 (7) \AA obtained for gem-dichloro substituents.
(7) The additivity rule for bond-length asymmetries (δ) has been applied with some success to acceptor and
donor interactions. Data on mixed acceptor-donor compounds are too sparse for a valid test on these interactions.
(8) There is a need for more accurate structural data for donor substituents and for the less-common π acceptors.
(9) The average Δ and D_{4} established in this analysis, especially for π acceptors, should provide a means of comparing the cyclopropane ring with the $\mathrm{C}=\mathrm{C}$ double bond, which it resembles in many of its properties. Such an analysis is in preparation (Allen, 1979) and further work on other small rings is in progress.
(10) The mean $\mathrm{C}-\mathrm{C}$ (ring) distance ($\overline{4}$) over 88 rings having acceptor or donor substituents and studied by X-ray methods is 1.510 (2) \AA, where the σ value is obtained from individual Δ discrepancies. This is close to the value of 1.508 (3) \AA from 27 rings having only $\mathrm{C}\left(s p^{3}\right)$ or H substituents. There is no evidence that either acceptor or donor substitution causes systematic changes in Δ. The mean Δ over all 115 X-ray determinations of $1.509_{5}\left(1_{7}\right)$ should be compared with the electron-diffraction value cited in the Introduction.

I thank Dr Olga Kennard for her interest in this work, the University of Cambridge Computing Service for their assistance, and Dr A. L. Bednowitz for providing coordinate data for CYPRCA.

References

Alekseev, N. V., Barzdain, P. P. \& Shostakovski!, V. M. (1972). Zh. Strukt. Khim. 13, 512-518.

Allen, F. H. (1979). In preparation.
Allen, F. H., Bellard, S., Brice, M. D., Cartwright, B. A., Doubleday, A., Higgs, H., Hummelink, T., Hummelink-Peters, B. G., Kennard, O., Motherwell, W. D. S., Rodgers, J. R. \& Watson, D. G. (1979). Acta Cryst. B35, 2331-2339.

Bartell, L. S., Guillory, J. P. \& Parks, A. T. (1965). J. Phys. Chem. 69, 3043-3048.
Barzdain, P. P., Fracheva, N. J. \& Alekseev, N. V. (1972). Zh. Strukt. Khim. 13, 717-721.

Bastiansen, O., Fritsch, F. N. \& Hedberg, K. (1964). Acta Cryst. 17, 538-543.
Bernett, W. A. (1967). J. Chem. Educ. 44, 17-24.
Butcher, R. J. \& Jones, W. J. (1973). J. Mol. Spectrosc. 47, 64-83.
Cannon, G. W., Santilli, A. A. \& Shenian, P. (1959). J. Am. Chem. Soc. 81, 1660-1666.
Charton, M. (1970). The Chemistry of Alkenes, Vol. II, edited by J. Zabicky, pp. 511-610. London: Interscience.
Chesnut, D. B. \& Marsh, R. E. (1958). Acta Cryst. 11 , 413-419.
Chiang, J. F. \& Bernett, W. A. (1971). Tetrahedron, 27, 975-980.
Cole, K. C. \& Gilson, D. F. R. (1975). J. Mol. Struct. 28, 385-390.

Coulson, C. A. \& Moffitt, W. E. (1947). J. Chem. Phys. 15, 151.
Coulson, C. A. \& Moffitt, W. E. (1949). Philos. Mag. 40, 1-15.
Deakyne, C. A., Allen, L. C. \& Craig, N. C. (1977). J. Am. Chem. Soc. 99, 3895-3903.
Deakyne, C. A., Allen, L. C. \& Laurie, V. W. (1977). J. Am. Chem. Soc. 99, 1343-1349.
DeMeijere, A. \& Luttke, W. (1969). Tetrahedron, 25, 2047-2057.
Deno, N. C., Richey, H. G. Jr, Liu, J. S., Lincoln, D. N. \& Turner, J. O. (1965). J. Am. Chem. Soc. 87, 45334538.

Flygare, W. H., Narath, A. \& Gwinn, W. D. (1962). J. Chem. Phys. 36, 200-208.
Fritchie, C. J. (1966). Acta Cryst. 20, 27-36.
Gillies, C. W. (1976). J. Mol. Spectrosc. 59, 482-492.
Goodman, A. L. \& Eastman, R. H. (1964). J. Am. Chem. Soc. 86, 908-911.
Gunthard, H. H., Lord, R. C. \& McCubbin, T. K. (1956). J. Chem. Phys. 25, 768-774.

Harmony, M. D., Bostrom, R. E. \& Hendrickson, D. K. (1975). J. Chem. Phys. 62, 1599-1600.

Hendrickson, D. K. \& Harmony, M. D. (1969). J. Chem. Phys. 51, 700-705.
Hoffmann, R. (1964). J. Chem. Phys. 49, 2480-2486.
Hoffmann, R. (1965). Tetrahedron Lett. pp. 3819-3824.
Hoffmann, R. (1970). Tetrahedron Lett. pp. 2907-2909.
Hoffmann, R. \& Davidson, R. B. (1971). J. Am. Chem. Soc. 93, 5699-5705.
Hoffmann, R. \& Stohrer, W.-D. (1971). J. Am. Chem. Soc. 93, 6941-6948.
Jason, M. E. \& Ibers, J. A. (1977). J. Am. Chem. Soc. 99, 6012-6021.
Jones, W. J. \& Stoicheff, B. P. (1964). Can. J. Phys. 42, 2259-2263.
Jorgensen, W. F. \& Salem, L. (1973). The Organic Chemists' Book of Orbitals. New York: Academic Press.
Kennard, O., Watson, D., Allen, F., Motherwell, W., Town, W. \& Rodgers, J. (1975). Chem. Brit. 11, 213216.

Kennard, O., Watson, D. G. \& Town, W. G. (1972). J. Chem. Doc. 12, 14-19.
Kosower, E. M. \& Ito, M. (1962). Proc. Chem. Soc. London, pp. 25-27.
lathan, W. A., Radom, L., Hariharan, P. C., Hehre, W. J. \& Pople, J. A. (1973). Top. Curr. Chem. 40, 1-45.

Lauher, J. W. \& Ibers, J. A. (1975). J. Am. Chem. Soc. 97, 561-567.
Laurie, V. W. \& Stigliani, W. M. (1970). J. Am. Chem. Soc. 92, 1485-1488.
Maillols, J., Tabacik, V. \& Sportouch, S. (1976). J. Mol. Struct. 32, 173-190.
Meester, M. A. M., Schenk, H. \& MacGillavry, C. H. (1971). Acta Cryst. B27, 630-634.

Mohrbacher, R. J. \& Cromwell, N. H. (1957). J. Am. Chem. Soc. 79, 401-408.
Nair, K. P. R. \& Boggs, J. E. (1976). J. Mol. Struct. 33, 45-48.
Pearson, R., Choplin, A. \& Laurie, V. W. (1975). J. Chem. Phys. 62, 4859-4861.
Pearson, R., Choplin, A., Laurie, V. W. \& Schwartz, J. (1975). J. Chem. Phys. 62, 2949-2951.

Penn, R. E. \& Boggs, J. E. (1972). Chem. Commun. pp. 666-667.
Perretta, A. T. \& Laurie, V. W. (1975). J. Chem. Phys. 62, 2469-2473.
Pochan, J. M., Baldwin, J. E. \& Flygare, W. H. (1969). J. Am. Chem. Soc. 91, 1896-1898.

Rogers, M. T. (1947). J. Am. Chem. Soc. 69, 2544-2548.
Schleyer, P. von R. \& Buss, V. (1969). J. Am. Chem. Soc. 91, 5880-5882.

Schwendemann, R. H., Jacobs, G. D. \& Krigas, T. M. (1964). J. Chem. Phys. 40, 1022-1028.

Skancke, A., Flood, E. \& Boggs, J. E. (1977). J. Mol. Struct. 40, 263-270.
Sugden, T. M. (1947). Nature (London), 160, 367-368.
Voltrauer, H. N. \& Schwendemann, R. H. (1971). J. Chem. Phys. 54, 260-267.
Walsh, A. D. (1947). Nature (London), 159, 165, 712-713.
Walsh, A. D. (1949). Trans. Faraday Soc. 45, 179-190.

Acta Cryst. (1980). B36, 96-99

Empilement Cristallin et Séparation Spontanée des Enantiomères. Structure Cristalline de la \boldsymbol{N}-(Phényl- 1 éthyl)-isobutyramide

Par A. Aubry et J. Protas
Laboratoire de Minéralogie et de Cristallographie, Equipe de Recherche associée au CNRS $n^{\circ} 162$, Université de Nancy I, Case Officielle n ${ }^{\circ}$ 140, 54037 Nancy CEDEX, France
et M. T. Cung et M. Marraud
Laboratoire de Chimie Physique Macromoléculaire, Equipe de Recherche associée au CNRS $n^{\circ} 23, E N S I C$, 1 rue Grandville, 54000 Nancy, France

(Reçu le 25 janvier 1979, accepté le 22 août 1979)

Abstract

The structure of racemic N-(1-phenylethyl)isobutyramide ($\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}, M_{r}=191$) has been determined from three-dimensional X-ray diffractometer data. The compound crystallizes in the monoclinic system, space group $P 2_{1} / c$, with $a=10.966$ (3), $b=$ 9.653 (3), $c=11.277$ (4) $\AA, \beta=98.57$ (4) ${ }^{\circ}, d_{x}=1.06$ $\mathrm{Mg} \mathrm{m}^{-3}, Z=4$. The structure was solved by MULTAN and refined by least-squares methods to $R=0.051$ with 1461 reflections. Homochiral molecules are hydrogen bonded and heterochiral molecules ex-

 perience only van der Waals forces.
Introduction

Lors d'une étude précédente (Aubry, Protas, Cung \& Marraud, 1980) nous avons décrit la structure cristalline de la N-(phényl-1 éthyl)-acétamide qui subit, lors de la cristallisation, une séparation spontanée des énantiomères. Afin de mettre en évidence l'influence du volume des extrémités de chainn sur ce comportement, nous avons examiné la structure à l'état solide de la N -(phényl-1 éthyl)-isobutyramide sur un monocristal obtenu à partir d'une solution du racémique.

La numérotation atomique est portée sur la Fig. 1.
Les cristaux ont été obtenus par lente évaporation d'une solution racémique dans l'acétate d'ethyle. Une fine aiguille de longueur inférieure à $0,3 \mathrm{~mm}$ a été utilisée pour enregistrer le réseau réciproque. Les intensités diffractées ont èté enregistrees sur un diffractomètre automatique CAD-4F Nonius, muni d'un monochromateur au graphite, en utilisant le rayonnement $K o$ du cuivre. Sur les 2241 réflexions enregistrées dans le domaine de Bragg compris entre 1 et $70^{\circ}, 1461$ réflexions indépendantes, satisfaisant au critère statistique $I>3 \sigma(I)$ ont été conservèes pour résoudre la structure. Le mode de balayage $\omega-5 \theta / 3$ a été utilisé. Chaque réflexion a été corrigée des phénomènes de Lorentz et de polarisation. L'absorption a été négligée ($\mu R=0,14$).

La structure a été déterminée à l'aide de la chaîne de programmes MULTAN (Germain, Main \& Woolfson, 1970). L'affinement des paramètres atomiques, sans schéma de pondération et tenant compte des corrections d'extinction secondaire isotrope ($g=0,0165$), par une méthode de moindres carrés avec matrice complète

[^0]: * Effective database for analysis.

